Patents by Inventor Shane M. Lamos

Shane M. Lamos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8563777
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic compositions facilitate relative quantification. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. The labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: October 22, 2013
    Assignees: Wisconsin Alumni Research Foundation, The Board of Trustees of the University of Illinois
    Inventors: Lloyd M. Smith, Michael R. Shortreed, Brian L. Frey, Margaret F. Phillips, Joshua J. Coon, Shane M. Lamos, Casey J. Krusemark, Peter J. Belshaw, Madhusudan Patel, Neil L. Kelleher
  • Publication number: 20120022230
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic compositions facilitate relative quantification. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. The labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Application
    Filed: June 8, 2011
    Publication date: January 26, 2012
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Lloyd M. SMITH, MICHAEL R. SHORTREED, BRIAN L. FREY, MARGARET F. PHILLIPS, JOSHUA J. COON, SHANE M. LAMOS, CASEY J. KRUSEMARK, PETER J. BELSHAW, MADHUSUDAN PATEL, NEIL L. KELLEHER
  • Patent number: 7982070
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic kit facilitating relative quantification and providing tangible evidence for the existence of specific functional groups. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules, such as biological samples. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. Advantageously, the labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: July 19, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Lloyd M. Smith, Michael R. Shortreed, Brian L. Frey, Margaret F. Phillips, Joshua J. Coon, Shane M. Lamos, Casey J. Krusemark, Peter J. Belshaw, Madhusudan Patel, Neil L. Kelleher