Patents by Inventor Shankar Muthukrishnan

Shankar Muthukrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200251362
    Abstract: A method for controlling temperature in a thermal processing chamber includes determining temperature sensitivity profiles of one or more heating elements or zones for a substrate based on measurements of the substrate. The method also includes selecting a temperature offset value for each of the one or more heating elements or zones. The method also includes simulating the adjustment of each of the one or more zone offset values to a respective final adjusting value that achieves a predetermined goal. The method further includes adjusting the temperature offset values for each of the one or more heating elements to the respective final adjusted values.
    Type: Application
    Filed: February 3, 2020
    Publication date: August 6, 2020
    Inventors: Ole LUCKNER, Shankar MUTHUKRISHNAN, Wolfgang R. ADERHOLD
  • Patent number: 10504779
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Shashank Sharma, Shankar Muthukrishnan, Rene George
  • Publication number: 20190157143
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA, Shankar MUTHUKRISHNAN, Rene GEORGE
  • Patent number: 10236207
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Johanes S. Swenberg, Wei Liu, Houda Graoui, Shashank Sharma, Shankar Muthukrishnan, Rene George
  • Publication number: 20170365512
    Abstract: Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
    Type: Application
    Filed: February 21, 2017
    Publication date: December 21, 2017
    Inventors: Johanes S. SWENBERG, Wei LIU, Houda GRAOUI, Shashank SHARMA, Shankar MUTHUKRISHNAN, Rene GEORGE
  • Patent number: 9263265
    Abstract: A method is disclosed for crystallizing semiconductor material so that it has large grains of uniform size comprising delivering a first energy exposure of high intensity and short duration, and then delivering at least one second energy exposures of low intensity and long duration. The first energy exposure heats the substrate to a high temperature for a duration less than about 0.1 sec. The second energy exposure heats the substrate to a lower temperature for a duration greater than about 0.1 sec.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 16, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shashank Sharma, Shankar Muthukrishnan, Abhilash J. Mayur
  • Publication number: 20150311067
    Abstract: Embodiments of the present disclosure relate to methods for processing a substrate. In one embodiment, the method includes forming a dielectric layer over a substrate, wherein the dielectric layer has a dielectric value of about 3.9 or greater, heating the substrate to a first temperature of about 600 degrees Celsius or less by a heater of a substrate support disposed within a process chamber, and incorporating nitrogen into the dielectric layer in the process chamber by annealing the dielectric layer at a second temperature between about 650 and about 1450 degrees Celsius in an ambient nitrogen environment, wherein the annealing is performed on the order of millisecond scale.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Inventors: Shashank SHARMA, Jau-Jiun CHEN, Wolfgang R. ADERHOLD, Kai NG, Houda GRAOUI, Shankar MUTHUKRISHNAN, Abhilash J. MAYUR, Gia PHAM
  • Publication number: 20150064933
    Abstract: A method is disclosed for crystallizing semiconductor material so that it has large grains of uniform size comprising delivering a first energy exposure of high intensity and short duration, and then delivering at least one second energy exposures of low intensity and long duration. The first energy exposure heats the substrate to a high temperature for a duration less than about 0.1 sec. The second energy exposure heats the substrate to a lower temperature for a duration greater than about 0.1 sec.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Shashank SHARMA, Shankar MUTHUKRISHNAN, Abhilash J. MAYUR
  • Patent number: 8323754
    Abstract: In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Olsen, Pravin K. Narwankar, Shreyas S. Kher, Randhir Thakur, Shankar Muthukrishnan, Philip A. Kraus
  • Patent number: 7794544
    Abstract: The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Son T. Nguyen, Kedarnath Sangam, Miriam Schwartz, Kenric Choi, Sanjay Bhat, Pravin K. Narwankar, Shreyas Kher, Rahul Sharangapani, Shankar Muthukrishnan, Paul Deaton
  • Publication number: 20070049043
    Abstract: A method and apparatus for forming a nitrided gate dielectric. The method comprises incorporating nitrogen into a dielectric film using a plasma nitridation process to form a nitrided gate dielectric. The first step involves providing a substrate comprising a gate dielectric film. The second step involves inducing a voltage on the substrate. Finally, the substrate is exposed to a plasma comprising a nitrogen source while maintaining the voltage to form a nitrided gate dielectric on the substrate. In one embodiment, the voltage is induced on the substrate by applying a voltage to an electrostatic chuck supporting the substrate. In another embodiment, the voltage is induced on the substrate by applying a DC bias voltage to an electrode positioned adjacent the substrate.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 1, 2007
    Inventors: Shankar Muthukrishnan, Rahul Sharangpani, Tejal Goyani, Pravin Narwankar, Shreyas Kher, Yi Ma, Giuseppina Conti
  • Publication number: 20060153995
    Abstract: Methods for forming dielectric materials on a substrate in a single cluster tool are provided. In one embodiment, the method includes providing a cluster tool having a plurality of deposition chambers, depositing a metal-containing oxide layer on a substrate in a first chamber of the cluster tool, treating the metal-containing oxide layer with an insert plasma process in a second chamber of the cluster tool, annealing the metal-containing oxide layer in a third chamber of the cluster tool, and depositing a gate electrode layer on the annealed substrate in a fourth chamber of the cluster tool.
    Type: Application
    Filed: December 9, 2005
    Publication date: July 13, 2006
    Inventors: Pravin Narwankar, Shreyas Kher, Shankar Muthukrishnan, Rahul Sharangpani, Philip Kraus, Chris Olsen, Khaled Ahmed
  • Publication number: 20060062917
    Abstract: In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 23, 2006
    Inventors: Shankar Muthukrishnan, Tejal Goyani, Rahul Sharangpani, Shreyas Kher, Pravin Narwankar, Khaled Ahmed, Yi Ma
  • Publication number: 20060019033
    Abstract: In one embodiment, a method for forming a dielectric material is provided which includes exposing a substrate sequentially to a metal-containing precursor and an oxidizing gas to form metal oxide (e.g., HfOx) during an ALD process and subsequently exposing the substrate to an inert plasma process and a thermal annealing process. Generally, the metal oxide contains hafnium, tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof. In one example, the inert plasma process contains argon and is free of nitrogen, while the thermal annealing process contains oxygen. In another example, an ALD process to form a metal oxide includes exposing the substrate sequentially to a metal precursor and an oxidizing gas containing water vapor formed by a catalytic water vapor generator.
    Type: Application
    Filed: June 24, 2005
    Publication date: January 26, 2006
    Inventors: Shankar Muthukrishnan, Rahul Sharangpani, Tejal Goyani, Pravin Narwankar, Shreyas Kher, Khaled Ahmed, Yi Ma
  • Publication number: 20050260357
    Abstract: In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 24, 2005
    Inventors: Christopher Olsen, Pravin Narwankar, Shreyas Kher, Randhir Thakur, Shankar Muthukrishnan, Philip Kraus
  • Publication number: 20050252449
    Abstract: The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
    Type: Application
    Filed: April 29, 2005
    Publication date: November 17, 2005
    Inventors: Son Nguyen, Kedarnath Sangam, Miriam Schwartz, Kenric Choi, Sanjay Bhat, Pravin Narwankar, Shreyas Kher, Rahul Sharangapani, Shankar Muthukrishnan, Paul Deaton