Patents by Inventor Shaohua Liang

Shaohua Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7400030
    Abstract: In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: July 15, 2008
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Yicheng Lu, Haifeng Sheng, Sriram Muthukumar, Nuri William Emanetoglu, Jian Zhong, Shaohua Liang
  • Publication number: 20050145970
    Abstract: In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 7, 2005
    Inventors: Yicheng Lu, Haifeng Sheng, Sriram Muthukumar, Nuri Emanetoglu, Jian Zhong, Shaohua Liang
  • Patent number: 6498549
    Abstract: A ferroelectric layer is deposited or in close proximity to a ferromagnetic ferrite layer to make a microwave substrate on which conductors can be deposited or placed to make devices. The permittivity of the ferroelectric layer can be changed by applying a voltage and the permeability of the ferromagnetic layer can be changed with a magnetic field. This makes it possible to tune the device characteristics with two different effects taking best advantage of the capabilities of each. A material example is ferromagnetic yttrium-iron-garnet on which is deposited a thin film of ferroelectric barium strontium titanate. To minimize losses, the ferroelectric film should be high quality, but practical yttrium-iron-garnet substrates are polycrystalline so that the use of buffer layers is desirable. At least two methods can be used to deposit the ferroelectric film, pulsed laser deposition and metal-organic chemical liquid deposition.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: December 24, 2002
    Assignee: Corning Applied Technologies Corporation
    Inventors: Hua Jiang, Wei Hu, Shaohua Liang, Yi-Qun Li, Vladimir Fuflyigin, Jiankang Huang
  • Patent number: 6366389
    Abstract: A high contrast ultrahigh speed optically-addressed ultraviolet light modulator exploits the optical anisotropy in a ZnO film epitaxially grown on (01 {overscore (1)}2) sapphire. This device, which could also be realized in a ZnO bulk crystal or similar wide bandgap material, achieves both high contrast and high speed by exploiting the anisotropic bleaching of the anisotropic absorption and concomitant ultrafast polarization rotation near the lowest exciton resonances produced by femtosecond ultraviolet pulses. The resultant modulation in a preferred embodiment is characterized by a contrast ratio of 70:1, corresponding to a dynamic polarization rotation of 12°, and decays to a quasi-equilibrium value within 100 ps.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: April 2, 2002
    Inventors: Michael Wraback, Paul H. Shen, Shaohua Liang, Chandrasekhar R. Gorla, Yicheng Lu