Patents by Inventor Shaorong Chang

Shaorong Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11474183
    Abstract: A magnetic resonance (MR) imaging method of correcting motion in precorrection MR images of a subject is provided. The method includes applying, by an MR system, a pulse sequence having a k-space trajectory of a blade being rotated in k-space. The method also includes acquiring k-space data of a three-dimensional (3D) imaging volume of the subject, the k-space data of the 3D imaging volume corresponding to the precorrection MR images and acquired by the pulse sequence. The method further includes receiving a 3D MR calibration data of a 3D calibration volume, wherein the 3D calibration volume is greater than or equal to the 3D imaging volume, jointly estimating rotation and translation in the precorrection MR images based on the k-space data of the 3D imaging volume and the calibration data, correcting motion in the precorrection images based on the estimated rotation and the estimated translation, and outputting the motion-corrected images.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 18, 2022
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Shaorong Chang, Xucheng Zhu, Ali Ersoz, Ajeetkumar Gaddipati, Moran Wei
  • Patent number: 10866292
    Abstract: Various methods and systems are provided for selecting radio frequency (RF) coil array for magnetic resonance imaging (MRI). In one embodiment, the method comprises grouping the plurality of coil elements into receiving elements groups (REGs) according to REGs information, generating channel sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the channel sensitivity maps, selecting one or more REGs based on the REG sensitivity maps and a region of interest (ROI), and scanning the ROI with the coil elements of the one or more selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, coil arrays may be automatically selected for improved image quality of the MRI.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: December 15, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shaorong Chang, Dashen Chu, Charles Michelich, Anja Kammeier, Dawei Gui, Zachary Slavens, Brent Robinson, Ling Sun
  • Patent number: 10859645
    Abstract: Various methods and systems are provided for selecting coil elements of a plurality of coil elements of a radio frequency (RF) coil array for use in a magnetic resonance imaging (MRI) system. In one example, a method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information, generating channel sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the channel sensitivity maps, labeling each REG as either selectable or not selectable based on the REG sensitivity maps, selecting one or more REGs from the selectable REGs based on the REG sensitivity maps and a region of interest (ROI), and scanning the ROI with the coil elements in the one or more selected REGs being activated and the coil elements not in any selected the other REGs being deactivated.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: December 8, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shaorong Chang, Eric Printz, Ling Sun, Anja Kammeier, Charles Michelich, Zachary Slavens
  • Patent number: 10859646
    Abstract: Various methods and systems are provided for selecting radio frequency coil array comprising a plurality of coil elements for magnetic resonance imaging. In one embodiment, the method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information; generating REG sensitivity maps; determining, for each REG, signal in a region of interest (ROI) and signal in an annefact source region based on the REG sensitivity maps; selecting one or more REGs based on the signal in the ROI and the signal in the annefact source region; and scanning the ROI with the coil elements in the one or more selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, annefact artifacts in the reconstructed image may be reduced.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: December 8, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shaorong Chang, Zachary Slavens, Dawei Gui
  • Patent number: 10816623
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Patent number: 10802101
    Abstract: Various methods and systems are provided for a radio frequency coil array comprising a plurality of coil elements for magnetic resonance imaging. In one embodiment, a method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information, generating coil element sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the coil element sensitivity maps, determining, for each REG, signals within a region of interest (ROI) and signals outside of the ROI based on the REG sensitivity maps, selecting one or more REGs based on the signals within the ROI and the signals outside of the ROI of each REG, and scanning the ROI with the coil elements in the selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, phase wrap artifacts may be reduced.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 13, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Shaorong Chang
  • Patent number: 10690741
    Abstract: Various methods and systems are provided for ghost artifact reduction in magnetic resonance imaging (MRI). In one embodiment, a method for an MRI system comprises acquiring a non-phase-encoded reference dataset, calculating phase corrections for spatial orders higher than first order from the non-phase-encoded reference dataset, acquiring a phase-encoded k-space dataset, correcting the phase-encoded k-space dataset with the phase corrections, and reconstructing an image from the corrected phase-encoded k-space dataset. In this way, ghost artifacts caused by phase errors during EPI may be substantially reduced, thereby improving image quality especially when imaging with a large field of view.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 23, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Quan Zhu, Gaohong Wu, Shaorong Chang, Richard Hinks
  • Patent number: 10613167
    Abstract: The present invention provides a magnetic resonance imaging method and system, the method comprising performing the following steps at least once: a composition step: performing image composition processing on raw images received by a receiving coil that is pre-determined as an artifact coil and a receiving coil that is pre-determined as a non-artifact coil to obtain a composite image; and a correction step: obtaining a product of the above composite image and space sensitivity of the above artifact coil to replace the raw image received by the above artifact coil, and performing the above composition step again.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 7, 2020
    Assignee: General Electric Company
    Inventors: Yongchuan Lai, Weiwei Zhang, Tongzhou Wang, Hongbin Wang, Yoshihiro Tomoda, Mitsuhiro Bekku, Shaorong Chang, Graeme Colin McKinnon
  • Publication number: 20190369180
    Abstract: Various methods and systems are provided for selecting coil elements of a plurality of coil elements of a radio frequency (RF) coil array for use in a magnetic resonance imaging (MRI) system. In one example, a method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information, generating channel sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the channel sensitivity maps, labeling each REG as either selectable or not selectable based on the REG sensitivity maps, selecting one or more REGs from the selectable REGs based on the REG sensitivity maps and a region of interest (ROI), and scanning the ROI with the coil elements in the one or more selected REGs being activated and the coil elements not in any selected the other REGs being deactivated.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Shaorong Chang, Eric Printz, Ling Sun, Anja Kammeier, Charles Michelich, Zachary Slavens
  • Publication number: 20190369181
    Abstract: Various methods and systems are provided for selecting radio frequency coil array comprising a plurality of coil elements for magnetic resonance imaging. In one embodiment, the method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information; generating REG sensitivity maps; determining, for each REG, signal in a region of interest (ROI) and signal in an annefact source region based on the REG sensitivity maps; selecting one or more REGs based on the signal in the ROI and the signal in the annefact source region; and scanning the ROI with the coil elements in the one or more selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, annefact artifacts in the reconstructed image may be reduced.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Shaorong Chang, Zachary Slavens, Dawei Gui
  • Publication number: 20190369198
    Abstract: Various methods and systems are provided for a radio frequency coil array comprising a plurality of coil elements for magnetic resonance imaging. In one embodiment, a method includes grouping the plurality of coil elements into receive elements groups (REGs) according to REGs information, generating coil element sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the coil element sensitivity maps, determining, for each REG, signals within a region of interest (ROI) and signals outside of the ROI based on the REG sensitivity maps, selecting one or more REGs based on the signals within the ROI and the signals outside of the ROI of each REG, and scanning the ROI with the coil elements in the selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, phase wrap artifacts may be reduced.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventor: Shaorong Chang
  • Publication number: 20190369179
    Abstract: Various methods and systems are provided for selecting radio frequency (RF) coil array for magnetic resonance imaging (MRI). In one embodiment, the method comprises grouping the plurality of coil elements into receiving elements groups (REGs) according to REGs information, generating channel sensitivity maps for the plurality of coil elements, generating REG sensitivity maps based on the REGs information and the channel sensitivity maps, selecting one or more REGs based on the REG sensitivity maps and a region of interest (ROI), and scanning the ROI with the coil elements of the one or more selected REGs being activated and the coil elements not in any selected REGs being deactivated. In this way, coil arrays may be automatically selected for improved image quality of the MRI.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Shaorong Chang, Dashen Chu, Charles Michelich, Anja Kammeier, Dawei Gui, Zachary Slavens, Brent Robinson, Ling Sun
  • Publication number: 20190331750
    Abstract: Various methods and systems are provided for ghost artifact reduction in magnetic resonance imaging (MRI). In one embodiment, a method for an MRI system comprises acquiring a non-phase-encoded reference dataset, calculating phase corrections for spatial orders higher than first order from the non-phase-encoded reference dataset, acquiring a phase-encoded k-space dataset, correcting the phase-encoded k-space dataset with the phase corrections, and reconstructing an image from the corrected phase-encoded k-space dataset. In this way, ghost artifacts caused by phase errors during EPI may be substantially reduced, thereby improving image quality especially when imaging with a large field of view.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Quan Zhu, Gaohong Wu, Shaorong Chang, Richard Hinks
  • Publication number: 20190154768
    Abstract: A system for magnetic resonance imaging an object is provided. The system includes a plurality of coil element groupings disposed within one or more RF coils, and a controller. The controller is operative to receive MR data from the object via the one or more RF coils, determine a g-factor for each of the coil element groupings of the plurality based at least in part on the MR data, and select a coil element grouping of the plurality based at least in part on the g-factors.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 23, 2019
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: DASHEN CHU, ZHU LI, HAI ZHENG, ANJA KAMMEIER, DAWEI GUI, SHAORONG CHANG, ZACHARY SLAVENS, GRAEME MCKINNON
  • Patent number: 10281542
    Abstract: A method of magnetic resonance imaging includes executing an imaging sequence, in response to the imaging sequence, acquiring magnetic resonance data, entering the acquired magnetic resonance data in k-space in a memory along a predetermined k-space trajectory, and modifying the k-space trajectory during acquisition of the magnetic resonance data.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 7, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Graeme McKinnon, Shaorong Chang
  • Publication number: 20190049536
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Patent number: 10132889
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Publication number: 20180059195
    Abstract: The present invention provides a magnetic resonance imaging method and system, the method comprising performing the following steps at least once: a composition step: performing image composition processing on raw images received by a receiving coil that is pre-determined as an artifact coil and a receiving coil that is pre-determined as a non-artifact coil to obtain a composite image; and a correction step: obtaining a product of the above composite image and space sensitivity of the above artifact coil to replace the raw image received by the above artifact coil, and performing the above composition step again.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 1, 2018
    Inventors: Yongchuan LAI, Weiwei ZHANG, Tongzhou WANG, Hongbin WANG, Yoshihiro TOMODA, Mitsuhiro BEKKU, Shaorong CHANG, Graeme Colin McKINNON
  • Publication number: 20170089993
    Abstract: A method of magnetic resonance imaging includes executing an imaging sequence, in response to the imaging sequence, acquiring magnetic resonance data, entering the acquired magnetic resonance data in k-space in a memory along a predetermined k-space trajectory, and modifying the k-space trajectory during acquisition of the magnetic resonance data.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: GRAEME McKINNON, SHAORONG CHANG
  • Patent number: 9322894
    Abstract: In an embodiment, a method includes performing a magnetic resonance (MR) data acquisition sequence including the acquisition of a plurality of blades of k-space data rotated about a section of k-space. The k-space data is representative of gyromagnetic material within a subject of interest, and each blade includes a plurality of encode lines defining a width of the respective blade. The acquisition of each blade includes receiving MR signal from echoes in two or more separate echo trains to fill at least a portion of the plurality of encode lines, and the echo trains are separated by an excitation pulse.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: April 26, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dawei Gui, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Zhiqiang Li