Patents by Inventor Shardul Patel

Shardul Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386785
    Abstract: Provided herein are approaches for optimizing a full horizontal scanned beam distance of an accelerator beam. In one approach, a method may include positioning a first Faraday cup along a first side of an intended beam-scan area, positioning a second Faraday cup along a second side of the intended beam-scan area, scanning an ion beam along the first and second sides of the intended beam-scan area, measuring a first beam current of the ion beam at the first Faraday cup and measuring a second beam current of the ion beam at the second Faraday cup, and determining an optimal scan distance of the ion beam across the intended beam-scan area based on the first beam current and the second beam current.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Tyler Wills, George M. Gammel, Eric Donald Wilson, Jay T. Scheuer, Xiangdong He, Shardul Patel, Robert C. Lindberg
  • Patent number: 11149345
    Abstract: Embodiments of the present disclosure relate to a rotatable electrostatic chuck. In some embodiments, a rotatable electrostatic chuck includes a dielectric disk having at least one chucking electrode and a plurality of coolant channels; a cryogenic manifold coupled to the dielectric disk and having a coolant inlet and a coolant outlet both of which are fluidly coupled to the plurality of coolant channels; a shaft assembly coupled to the cryogenic manifold; a cryogenic supply chamber coupled to the shaft assembly; a supply tube coupled to the cryogenic supply chamber and to the coolant inlet to supply the cryogenic medium to the plurality of coolant channels, wherein the supply tube extends through the central opening of the shaft assembly; and a return tube coupled to the coolant outlet and to the cryogenic supply chamber, wherein the supply tube is disposed within the return tube.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 19, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shardul Patel, Robert Mitchell
  • Publication number: 20190181028
    Abstract: Embodiments of the present disclosure relate to a rotatable electrostatic chuck. In some embodiments, a rotatable electrostatic chuck includes a dielectric disk having at least one chucking electrode and a plurality of coolant channels; a cryogenic manifold coupled to the dielectric disk and having a coolant inlet and a coolant outlet both of which are fluidly coupled to the plurality of coolant channels; a shaft assembly coupled to the cryogenic manifold; a cryogenic supply chamber coupled to the shaft assembly; a supply tube coupled to the cryogenic supply chamber and to the coolant inlet to supply the cryogenic medium to the plurality of coolant channels, wherein the supply tube extends through the central opening of the shaft assembly; and a return tube coupled to the coolant outlet and to the cryogenic supply chamber, wherein the supply tube is disposed within the return tube.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: SHARDUL PATEL, ROBERT MITCHELL
  • Publication number: 20150048254
    Abstract: A composite electrostatic rod may include a body comprising a length L and cross sectional area A. The body may include an outer portion comprising a first material, and a core comprising a second material different than the first material and surrounded by the outer portion, wherein a natural frequency of the composite electrostatic rod is greater than that of a graphite rod having the length L and cross sectional area A.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Inventors: Oliver V. Naumovski, Shardul Patel, Charles A. Teodorczyk
  • Patent number: 8907295
    Abstract: A composite electrostatic rod may include a body comprising a length L and cross sectional area A. The body may include an outer portion comprising a first material, and a core comprising a second material different than the first material and surrounded by the outer portion, wherein a natural frequency of the composite electrostatic rod is greater than that of a graphite rod having the length L and cross sectional area A.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: December 9, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Oliver V. Naumovski, Shardul Patel, Charles A. Teodorczyk
  • Publication number: 20140034843
    Abstract: A composite electrostatic rod may include a body comprising a length L and cross sectional area A. The body may include an outer portion comprising a first material, and a core comprising a second material different than the first material and surrounded by the outer portion, wherein a natural frequency of the composite electrostatic rod is greater than that of a graphite rod having the length L and cross sectional area A.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Oliver V. Naumovski, Shardul Patel, Charles A. Teodorczyk
  • Patent number: 8436318
    Abstract: An RF ion source utilizing a heating/RF-shielding element for controlling the temperature of an RF window and to act as an RF shielding element for the RF ion source. When the heating/RF shielding element is in a heating mode, it suppresses formation of unwanted deposits on the RF window which negatively impacts the transfer of RF energy from an RF antenna to a plasma chamber. When the heating/RF-shielding element is in a shielding mode, it provides an electrostatic shielding for the RF ion source.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 7, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Bon-Woong Koo, Victor Benveniste, Shardul Patel
  • Patent number: 8188448
    Abstract: An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Patent number: 8183542
    Abstract: An ion source is provided that utilizes a cooling plate and a gap interface to control the temperature of an ion source chamber. The gap interface is defined between the cooling plate and a wall of the chamber. A coolant gas is supplied to the interface at a given pressure where the pressure determines thermal conductivity from the cooling plate to the chamber to control the temperature of the interior of the chamber.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 22, 2012
    Assignee: Varion Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Publication number: 20110240877
    Abstract: An ion source is provided that utilizes a cooling plate and a gap interface to control the temperature of an ion source chamber. The gap interface is defined between the cooling plate and a wall of the chamber. A coolant gas is supplied to the interface at a given pressure where the pressure determines thermal conductivity from the cooling plate to the chamber to control the temperature of the interior of the chamber.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Publication number: 20110240878
    Abstract: An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Victor Benveniste, Bon-Woong Koo, Shardul Patel, Frank Sinclair
  • Publication number: 20110240876
    Abstract: An RF ion source utilizing a heating/RF-shielding element for controlling the temperature of an RF window and to act as an RF shielding element for the RF ion source. When the heating/RF shielding element is in a heating mode, it suppresses formation of unwanted deposits on the RF window which negatively impacts the transfer of RF energy from an RF antenna to a plasma chamber. When the heating/RF-shielding element is in a shielding mode, it provides an electrostatic shielding for the RF ion source.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 6, 2011
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Costel Biloiu, Bon-Woong Koo, Victor Benveniste, Shardul Patel
  • Patent number: 8003956
    Abstract: An ion implantation system for neutralizing the space charge effect associated with a high current low energy ion beam. The implantation system includes an ion source configured to receive a dopant gas and generate ions having a particular energy and mass from which ions are extracted through an aperture. A work piece positioned downstream of the ion source for receiving the extracted ions in the form of an ion beam. A bleed gas channel disposed between the ion source and the work piece. The bleed gas channel supplying a gas used to neutralize the space charge effect associated with the ion beam.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 23, 2011
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: D. Jeffrey Lischer, John (Bon-Woong) Koo, Peter F. Kurunczi, Shardul Patel, Wilhelm P. Platow
  • Publication number: 20100084582
    Abstract: An ion implantation system for neutralizing the space charge effect associated with a high current low energy ion beam. The implantation system includes an ion source configured to receive a dopant gas and generate ions having a particular energy and mass from which ions are extracted through an aperture. A work piece positioned downstream of the ion source for receiving the extracted ions in the form of an ion beam. A bleed gas channel disposed between the ion source and the work piece. The bleed gas channel supplying a gas used to neutralize the space charge effect associated with the ion beam.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: D. Jeffrey LISCHER, John (Bon-Woong) KOO, Peter F. KURUNCZI, Shardul PATEL, Wilhelm P. PLATOW