Patents by Inventor Sharon Malevsky

Sharon Malevsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11283426
    Abstract: An electrical device (100) that comprises at least one signal filter (104) comprising a plurality of mechanical resonators (106 108, 110) in a substrate (102) and at least one further mechanical resonator (112) in the substrate (102) configured to oscillate at a reference frequency of an oscillator signal. An electrical system (300) comprising an electrical oscillator (306) a transceiver (302) and an antenna (310), and an electrical device (100). A method (1300) for providing an electrical device (100).
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 22, 2022
    Assignee: Apple Inc.
    Inventors: Igal Kushnir, Harry Skinner, Bernhard Raaf, Sharon Malevsky, Gil Horovitz
  • Patent number: 11264997
    Abstract: Systems, methods, and circuitries are provided to generate a radio frequency (RF) signal having a desired radio frequency fRF. In one example a frequency synthesizer system includes a clock, an opportunistic phase locked loop (PLL), and an RF PLL. The clock circuitry is configured to generate a clock signal having a frequency fXTL. The opportunistic phase locked loop (PLL) is configured to generate a reference signal having a reference frequency fREF that is close to a free-running frequency of an oscillator in the opportunistic PLL. The opportunistic PLL is configured to synchronize the reference signal to the clock signal. The RF PLL is configured to generate the RF signal having the desired radio frequency and to synchronize the RF signal with the reference signal.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Gil Horovitz, Sharon Malevsky, Evgeny Shumaker, Igal Kushnir
  • Patent number: 11221643
    Abstract: Methods, systems, and circuitries are provided to generate clock signals of different qualities in a device. A method includes determining whether the device is operating in a mid power mode or a high power mode. In response to determining that the device is operating in the mid power mode, oscillator circuitry is controlled to cause the oscillator circuitry to consume a lower amount of power, such that the oscillator circuitry generates a lower quality clock signal. In response to determining that the device is operating in the high power mode, the oscillator circuitry is controlled to cause the oscillator circuitry to consume a higher amount of power, such that the oscillator circuitry generates a higher quality clock signal. The lower amount of power and the higher amount of power are different from one another.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 11, 2022
    Assignee: Apple Inc.
    Inventors: Sharon Malevsky, Tomer Gidoni, Shahar Porat, Ayal Eshkoli, Tom Romano, Johannes Brendel, Stefan Meyer
  • Patent number: 11101771
    Abstract: A crystal oscillator is provided. The crystal oscillator includes a crystal resonator including a pair of terminals and being capable of oscillating at a fundamental resonance frequency and at least one overtone resonance frequency. Further, the crystal oscillator includes an inverter circuit coupled between the pair of terminals. The crystal oscillator additionally includes a suppression circuit configured to suppress oscillation of the crystal resonator at the fundamental resonance frequency. Further, the crystal oscillator includes a control circuit configured to control a switch circuit for selectively coupling the suppression circuit to the crystal resonator.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Sharon Malevsky, Ofer Gueta, Tomer Gidoni
  • Publication number: 20210200258
    Abstract: Methods, systems, and circuitries are provided to generate clock signals of different qualities in a device. A method includes determining whether the device is operating in a mid power mode or a high power mode. In response to determining that the device is operating in the mid power mode, oscillator circuitry is controlled to cause the oscillator circuitry to consume a lower amount of power, such that the oscillator circuitry generates a lower quality clock signal. In response to determining that the device is operating in the high power mode, the oscillator circuitry is controlled to cause the oscillator circuitry to consume a higher amount of power, such that the oscillator circuitry generates a higher quality clock signal. The lower amount of power and the higher amount of power are different from one another.
    Type: Application
    Filed: September 28, 2017
    Publication date: July 1, 2021
    Inventors: Sharon Malevsky, Tomer Gidoni, Shahar Porat, Ayal Eshkoli, Tom Romano, Johannes Brendel, Stefan Meyer
  • Publication number: 20210050857
    Abstract: Systems, methods, and circuitries are provided to generate a radio frequency (RF) signal having a desired radio frequency fRF. In one example a frequency synthesizer system includes a clock, an opportunistic phase locked loop (PLL), and an RF PLL. The clock circuitry is configured to generate a clock signal having a frequency fXTL. The opportunistic phase locked loop (PLL) is configured to generate a reference signal having a reference frequency fREF that is close to a free-running frequency of an oscillator in the opportunistic PLL. The opportunistic PLL is configured to synchronize the reference signal to the clock signal. The RF PLL is configured to generate the RF signal having the desired radio frequency and to synchronize the RF signal with the reference signal.
    Type: Application
    Filed: October 9, 2020
    Publication date: February 18, 2021
    Inventors: Gil Horovitz, Sharon Malevsky, Evgeny Shumaker, Igal Kushnir
  • Publication number: 20200395916
    Abstract: An electrical device (100) that comprises at least one signal filter (104) comprising a plurality of mechanical resonators (106 108, 110) in a substrate (102) and at least one further mechanical resonator (112) in the substrate (102) configured to oscillate at a reference frequency of an oscillator signal. An electrical system (300) comprising an electrical oscillator (306) a transceiver (302) and an antenna (310), and an electrical device (100). A method (1300) for providing an electrical device (100).
    Type: Application
    Filed: December 29, 2017
    Publication date: December 17, 2020
    Inventors: Igal Kushnir, Harry Skinner, Bernhard Raaf, Sharon Malevsky, Gil Horovitz
  • Patent number: 10804911
    Abstract: Systems, methods, and circuitries are provided to generate a radio frequency (RF) signal having a desired radio frequency fRF. In one example a frequency synthesizer system includes a clock, an opportunistic phase locked loop (PLL), and an RF PLL. The clock circuitry is configured to generate a clock signal having a frequency fXTL. The opportunistic phase locked loop (PLL) is configured to generate a reference signal having a reference frequency fREF that is close to a free-running frequency of an oscillator in the opportunistic PLL. The opportunistic PLL is configured to synchronize the reference signal to the clock signal. The RF PLL is configured to generate the RF signal having the desired radio frequency and to synchronize the RF signal with the reference signal.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: Gil Horovitz, Sharon Malevsky, Evgeny Shumaker, Igal Kushnir
  • Publication number: 20200287557
    Abstract: Systems, methods, and circuitries are provided to generate a radio frequency (RF) signal having a desired radio frequency fRF. In one example a frequency synthesizer system includes a clock, an opportunistic phase locked loop (PLL), and an RF PLL. The clock circuitry is configured to generate a clock signal having a frequency fXTL. The opportunistic phase locked loop (PLL) is configured to generate a reference signal having a reference frequency fREF that is close to a free-running frequency of an oscillator in the opportunistic PLL. The opportunistic PLL is configured to synchronize the reference signal to the clock signal. The RF PLL is configured to generate the RF signal having the desired radio frequency and to synchronize the RF signal with the reference signal.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 10, 2020
    Inventors: Gil Horovitz, Sharon Malevsky, Evgeny Shumaker, Igal Kushnir
  • Patent number: 10712875
    Abstract: Described is an apparatus of a thermal sensor and/or bandgap reference circuit which is independent of an operational amplifier. The apparatus comprises: a forward biased diode circuit having one or more diodes; a first switch-capacitor sampler coupled to the forward biased diode circuit, the first switch-capacitor sampler to provide a reference voltage which is proportional to absolute temperature; and a second switch-capacitor sampler coupled to the forward biased diode circuit.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: July 14, 2020
    Assignee: INTEL CORPORATION
    Inventor: Sharon Malevsky
  • Publication number: 20200136557
    Abstract: A crystal oscillator is provided. The crystal oscillator includes a crystal resonator including a pair of terminals and being capable of oscillating at a fundamental resonance frequency and at least one overtone resonance frequency. Further, the crystal oscillator includes an inverter circuit coupled between the pair of terminals. The crystal oscillator additionally includes a suppression circuit configured to suppress oscillation of the crystal resonator at the fundamental resonance frequency. Further, the crystal oscillator includes a control circuit configured to control a switch circuit for selectively coupling the suppression circuit to the crystal resonator.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 30, 2020
    Inventors: Sharon Malevsky, Ofer Gueta, Tomer Gidoni
  • Publication number: 20160224146
    Abstract: Described is an apparatus of a thermal sensor and/or bandgap reference circuit which is independent of an operational amplifier. The apparatus comprises: a forward biased diode circuit having one or more diodes; a first switch-capacitor sampler coupled to the forward biased diode circuit, the first switch-capacitor sampler to provide a reference voltage which is proportional to absolute temperature; and a second switch-capacitor sampler coupled to the forward biased diode circuit.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 4, 2016
    Inventor: Sharon MALEVSKY
  • Publication number: 20030125065
    Abstract: Briefly, in accordance with one embodiment of the invention, a transmitter and a method for generating an output signal according to a first and second outphased signals are provided. The method and transmitter generates the first and the second outphased signals according to amplitude and a phase of an input signal.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 3, 2003
    Inventors: Ilan Barak, Jaime Hasson, Sharon Malevsky