Patents by Inventor SHAYAN HOSHYARI

SHAYAN HOSHYARI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11941746
    Abstract: Embodiments are disclosed for computing accurate smooth occluding contours. In one embodiment, a method of computing accurate smooth occluding contours includes projecting a boundary polygon associated with a first region of a three-dimensional (3D) object to a two-dimensional (2D) image plane, the boundary polygon comprising a plurality of contour vertices and edges connecting the plurality of contour vertices, triangulating the first region in the 2D image plane to generate a 2D triangulation, and generating a 3D mesh for the first region by mapping the 2D triangulation to the 3D object.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: March 26, 2024
    Assignee: Adobe Inc.
    Inventors: Aaron Hertzmann, Shayan Hoshyari, Chenxi Liu
  • Publication number: 20230074094
    Abstract: Embodiments are disclosed for computing accurate smooth occluding contours. In one embodiment, a method of computing accurate smooth occluding contours includes projecting a boundary polygon associated with a first region of a three-dimensional (3D) object to a two-dimensional (2D) image plane, the boundary polygon comprising a plurality of contour vertices and edges connecting the plurality of contour vertices, triangulating the first region in the 2D image plane to generate a 2D triangulation, and generating a 3D mesh for the first region by mapping the 2D triangulation to the 3D object.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Inventors: Aaron HERTZMANN, Shayan HOSHYARI, Chenxi LIU
  • Patent number: 11478931
    Abstract: A robot control method, and associated robot controllers and robots operating with such methods and controllers, providing computational vibration suppression. Given a desired animation cycle for a robotic system or robot, the control method uses a dynamic simulation of the physical robot, which takes into account the flexible components of the robot, to predict if vibrations will be seen in the physical robot. If vibrations are predicted with the input animation cycle, the control method optimizes the set of motor trajectories to return a set of trajectories that are as close as possible to the artistic or original intent of the provider of the animation cycle, while minimizing unwanted vibration. The new control method or design tool suppresses unwanted vibrations and allows a robot designer to use lighter and/or softer (less stiff) and, therefore, less expensive systems in new robots.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: October 25, 2022
    Assignee: Disney Enterprises, Inc.
    Inventors: Moritz Niklaus Bâcher, Shayan Hoshyari, Hongyi Xu, Stelian Coros, Lars Espen Knoop
  • Publication number: 20200406461
    Abstract: A robot control method, and associated robot controllers and robots operating with such methods and controllers, providing computational vibration suppression. Given a desired animation cycle for a robotic system or robot, the control method uses a dynamic simulation of the physical robot, which takes into account the flexible components of the robot, to predict if vibrations will be seen in the physical robot. If vibrations are predicted with the input animation cycle, the control method optimizes the set of motor trajectories to return a set of trajectories that are as close as possible to the artistic or original intent of the provider of the animation cycle, while minimizing unwanted vibration. The new control method or design tool suppresses unwanted vibrations and allows a robot designer to use lighter and/or softer (less stiff) and, therefore, less expensive systems in new robots.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 31, 2020
    Inventors: MORITZ NIKLAUS BÄCHER, SHAYAN HOSHYARI, HONGYI XU, STELIAN COROS, LARS ESPEN KNOOP