Patents by Inventor Sheldon McLaughlin

Sheldon McLaughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11489311
    Abstract: An optical amplifier may include an optical fiber to propagate a forward optical signal in a path of propagation of the optical amplifier. The optical fiber may have an input end face that is angled non-perpendicular to the path of propagation. The optical amplifier may include an optical component, in optical communication with the input end face of the optical fiber, to direct a backward optical emission away from the path of propagation.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Guansan Chen, Sheldon McLaughlin
  • Patent number: 11448829
    Abstract: An M×N wavelength selective switch (WSS), may comprise a common port fiber array unit (FAU) configured to emit optical beams with a lateral offset and a beam steering device configured to direct optical beams with an angular offset to add/drop port optical fibers of an add/drop port FAU. The common port FAU may comprise a first set of common port optical fibers arranged in a first column of the common port FAU and a second set of common port optical fibers arranged in a second column of the common port FAU. The second column of the common port FAU may be laterally offset from the first column of the common port FAU. The beam steering device may be configured to selectively direct, in two dimensions, the optical beams with the angular offset to the add/drop port optical fibers.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: September 20, 2022
    Assignee: Lumentum Operations LLC
    Inventor: Sheldon McLaughlin
  • Publication number: 20210356674
    Abstract: An M×N wavelength selective switch (WSS), may comprise a common port fiber array unit (FAU) configured to emit optical beams with a lateral offset and a beam steering device configured to direct optical beams with an angular offset to add/drop port optical fibers of an add/drop port FAU. The common port FAU may comprise a first set of common port optical fibers arranged in a first column of the common port FAU and a second set of common port optical fibers arranged in a second column of the common port FAU. The second column of the common port FAU may be laterally offset from the first column of the common port FAU. The beam steering device may be configured to selectively direct, in two dimensions, the optical beams with the angular offset to the add/drop port optical fibers.
    Type: Application
    Filed: August 20, 2020
    Publication date: November 18, 2021
    Inventor: Sheldon MCLAUGHLIN
  • Patent number: 11079551
    Abstract: An optical device may include a monolithic beam steering engine. The device may include a twin M×N wavelength selective switch (WSS) including a first M×N WSS and a second M×N WSS. The first M×N WSS may include a first panel section of the monolithic beam steering engine to perform first beam steering of first beams, wherein the first beam steering is add/drop port beam steering; and a second panel section of the monolithic beam steering engine to perform second beam steering of second beams, wherein the second beam steering is common port beam steering. The first M×N WSS may include a first optical element aligned to the monolithic beam steering engine to direct one of the first beams or the second beams relative to the other of the first beams or the second beams, such that the first beams are directed in a different direction from the second beams.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 3, 2021
    Assignee: Lumentum Operations LLC
    Inventors: Peter David Roorda, Paul Colbourne, Sheldon McLaughlin
  • Publication number: 20210119402
    Abstract: An optical amplifier may include an optical fiber to propagate a forward optical signal in a path of propagation of the optical amplifier. The optical fiber may have an input end face that is angled non-perpendicular to the path of propagation. The optical amplifier may include an optical component, in optical communication with the input end face of the optical fiber, to direct a backward optical emission away from the path of propagation.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 22, 2021
    Inventors: Guansan CHEN, Sheldon MCLAUGHLIN
  • Patent number: 10923875
    Abstract: An optical device may include a package having a first port for receiving signal light, a source for providing pump light, a combiner for combining the signal light and the pump light into combined light, a second port for sending the combined light, a third port for receiving amplified light, and a free-space optical system for filtering amplified signal light from the amplified light, and a fourth port for sending the amplified signal light. The free-space optical system may include beam shaping optics that enlarge a beam size of the amplified light prior to the filtering.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 16, 2021
    Assignee: Lumentum Operations LLC
    Inventors: Jiamin Zheng, Barrie P. Keyworth, Paul Colbourne, Dhanorm Plumwongrot, Gareth Jones, Sheldon McLaughlin
  • Publication number: 20200209485
    Abstract: An optical device may include a monolithic beam steering engine. The device may include a twin M×N wavelength selective switch (WSS) including a first M×N WSS and a second M×N WSS. The first M×N WSS may include a first panel section of the monolithic beam steering engine to perform first beam steering of first beams, wherein the first beam steering is add/drop port beam steering; and a second panel section of the monolithic beam steering engine to perform second beam steering of second beams, wherein the second beam steering is common port beam steering. The first M×N WSS may include a first optical element aligned to the monolithic beam steering engine to direct one of the first beams or the second beams relative to the other of the first beams or the second beams, such that the first beams are directed in a different direction from the second beams.
    Type: Application
    Filed: December 17, 2019
    Publication date: July 2, 2020
    Inventors: Peter David ROORDA, Paul COLBOURNE, Sheldon MCLAUGHLIN
  • Patent number: 10461493
    Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: October 29, 2019
    Assignee: Lumentum Operations LLC
    Inventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
  • Publication number: 20190245316
    Abstract: An optical device may include a package having a first port for receiving signal light, a source for providing pump light, a combiner for combining the signal light and the pump light into combined light, a second port for sending the combined light, a third port for receiving amplified light, and a free-space optical system for filtering amplified signal light from the amplified light, and a fourth port for sending the amplified signal light. The free-space optical system may include beam shaping optics that enlarge a beam size of the amplified light prior to the filtering.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 8, 2019
    Inventors: Jiamin ZHENG, Barrie P. KEYWORTH, Paul COLBOURNE, Dhanorm PLUMWONGROT, Gareth Jones, Sheldon MCLAUGHLIN
  • Publication number: 20190006816
    Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
    Type: Application
    Filed: August 10, 2018
    Publication date: January 3, 2019
    Inventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
  • Publication number: 20180337746
    Abstract: A wavelength selective switch (WSS) may include a first set of ports, each to launch a respective beam of a first set of beams, wherein the first set of beams is provided to a first position on a focal plane, and wherein a first set of wavelength channel sub-beams, included in a beam of the first set of beams, is to be incident on a particular section of a switching array. The WSS may include a second set of ports, each to launch a respective beam of a second set of beams, wherein the second set of beams is provided to a second position on the focal plane, wherein the second position is different from the first position, and wherein a second set of wavelength channel sub-beams, included in a beam of the second set of beams, is to be incident on the particular section of the switching array.
    Type: Application
    Filed: August 24, 2017
    Publication date: November 22, 2018
    Inventors: Paul COLBOURNE, Sheldon Mclaughlin
  • Patent number: 10135559
    Abstract: A wavelength selective switch (WSS) may include a first set of ports, each to launch a respective beam of a first set of beams, wherein the first set of beams is provided to a first position on a focal plane, and wherein a first set of wavelength channel sub-beams, included in a beam of the first set of beams, is to be incident on a particular section of a switching array. The WSS may include a second set of ports, each to launch a respective beam of a second set of beams, wherein the second set of beams is provided to a second position on the focal plane, wherein the second position is different from the first position, and wherein a second set of wavelength channel sub-beams, included in a beam of the second set of beams, is to be incident on the particular section of the switching array.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: November 20, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Paul Colbourne, Sheldon McLaughlin
  • Patent number: 10061083
    Abstract: A compact wavelength dispersing device and a wavelength selective optical switch based on the wavelength dispersing device is described. The wavelength dispersing device has a folding mirror that folds the optical path at least three times. A focal length of a focusing coupler of the device is reduced and the NA is increased, while the increased optical aberrations are mitigated by using an optional coma-compensating wedge. A double-pass arrangement for a transmission diffraction grating allows further focal length and overall size reduction due to increased angular dispersion.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 28, 2018
    Assignee: Lumentum Operations LLC
    Inventor: Sheldon McLaughlin
  • Patent number: 10050405
    Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: August 14, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Wei Xiong, Michael C. Larson, Paul Colbourne, Sheldon McLaughlin
  • Patent number: 10031397
    Abstract: A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 24, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Josh P. Kemp, Sheldon McLaughlin, Thomas Friessnegg
  • Publication number: 20170302051
    Abstract: A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 19, 2017
    Inventors: Wei XIONG, Michael C. LARSON, Paul COLBOURNE, Sheldon MCLAUGHLIN
  • Publication number: 20170131616
    Abstract: A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Josh P. KEMP, Sheldon McLaughlin, Thomas Friessnegg
  • Patent number: 9563021
    Abstract: An optical switching device including an optical switching engine may be packaged by omitting an optical bench and disposing optical elements directly on a base of a housing of the optical switching device. The optical switching engine may be disposed on a ceramic portion of the base, and thermally matched to the ceramic base. The base may be reinforced by the housing walls and optional internal rigidity ribs. The optical elements may be thermally matched to the base, and the lid may be strain relieved by thinning lid edges. The housing may be mounted to an external chassis using soft grummets.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: February 7, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Abdul Jaleel K. Moidu, Sheldon McLaughlin, Nenad Duricic
  • Patent number: 9551900
    Abstract: A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 24, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Josh P. Kemp, Sheldon McLaughlin, Thomas Friessnegg
  • Patent number: 9548834
    Abstract: A colorless, directionless ROADM includes a pair of contentioned add and drop wavelength-selective optical switches, an input wavelength-selective optical switch having one input port, and an output wavelength-selective optical switch having one output port. Unintended input-to-output port couplings, which appear in the “contentioned” add and drop switches, can be mitigated by the input and output wavelength-selective optical switches carrying the through traffic.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: January 17, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Peter David Roorda, Sheldon McLaughlin