Patents by Inventor Shem O. Ogadhoh

Shem O. Ogadhoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317612
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and techniques directed to electrical couplings between epitaxial structures and voltage sources within transistors in SRAM bit cells. Embodiments include direct electrical couplings between a backside contact metal (BMO) and a backside of an epitaxial structure to provide SRAM VCC voltage (SVCC) voltage, as well as electrical connection structures that electrically couple the BMO to a front side of an epitaxial structure to provide SVCC voltage. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Clifford ONG, Zheng GUO, Eirc A. KARL, Smita SHRIDHARAN, Mauro J. KOBRINSKY, Shem O. OGADHOH, Clifford J. ENGEL, Charles H. WALLACE, Leonard P. GULER
  • Publication number: 20230317148
    Abstract: Embodiments described herein may be related to apparatuses, processes, systems, and techniques directed to electrical couplings between epitaxial structures and voltage sources within transistors in SRAM bit cells. Embodiments include direct electrical couplings between a backside contact metal (BM0) and a backside of an epitaxial structure, as well as electrical connection structures that electrically couple the BM0 to a front side of an epitaxial structure. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Clifford ONG, Leonard P. GULER, Smita SHRIDHARAN, Zheng GUO, Charles H. WALLACE, Eric A. KARL, Mauro J. KOBRINSKY, Shem O. OGADHOH, Tahir GHANI
  • Publication number: 20230207445
    Abstract: Stitched dies having high bandwidth and capacity are described. For example, an integrated circuit structure includes a first die including a first device layer and a first plurality of metallization layers over the first device layer, wherein the first device layer is a logic device layer. The integrated circuit structure also includes a second die including a second device layer and a second plurality of metallization layers over the second device layer, the second die separated from the first die by a scribe region. The second device layer is a transistor device layer, and the second plurality of metallization layers includes a layer of capacitor structures between an upper metallization layer portion and a lower metallization layer portion. A common conductive interconnection is coupling the first die and the second die at a first side of the first and second dies.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Inventors: Abhishek Anil SHARMA, Christopher M. PELTO, Wilfred GOMES, Mark C. PHILLIPS, Swaminathan SIVAKUMAR, Shem O. OGADHOH
  • Patent number: 11581162
    Abstract: Lithographic apparatuses suitable for complementary e-beam lithography (CEBL) are described. In an example, a method of forming a pattern for a semiconductor structure includes forming a pattern of parallel lines above a substrate. The method also includes aligning the substrate in an e-beam tool to provide the pattern of parallel lines parallel with a scan direction of the e-beam tool. The e-beam tool includes a column having a blanker aperture array (BAA) with a staggered pair of columns of openings along an array direction orthogonal to the scan direction. The method also includes forming a pattern of cuts or vias in or above the pattern of parallel lines to provide line breaks for the pattern of parallel lines by scanning the substrate along the scan direction. A cumulative current through the column has a non-zero and substantially uniform cumulative current value throughout the scanning.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventors: Shakul Tandon, Mark C. Phillips, Shem O. Ogadhoh, John A. Swanson
  • Publication number: 20210358713
    Abstract: Lithographic apparatuses suitable for complementary e-beam lithography (CEBL) are described. In an example, a method of forming a pattern for a semiconductor structure includes forming a pattern of parallel lines above a substrate. The method also includes aligning the substrate in an e-beam tool to provide the pattern of parallel lines parallel with a scan direction of the e-beam tool. The e-beam tool includes a column having a blanker aperture array (BAA) with a staggered pair of columns of openings along an array direction orthogonal to the scan direction. The method also includes forming a pattern of cuts or vias in or above the pattern of parallel lines to provide line breaks for the pattern of parallel lines by scanning the substrate along the scan direction. A cumulative current through the column has a non-zero and substantially uniform cumulative current value throughout the scanning.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Shakul TANDON, Mark C. PHILLIPS, Shem O. OGADHOH, John A. SWANSON
  • Patent number: 11107658
    Abstract: Lithographic apparatuses suitable for complementary e-beam lithography (CEBL) are described. In an example, a method of forming a pattern for a semiconductor structure includes forming a pattern of parallel lines above a substrate. The method also includes aligning the substrate in an e-beam tool to provide the pattern of parallel lines parallel with a scan direction of the e-beam tool. The e-beam tool includes a column having a blanker aperture array (BAA) with a staggered pair of columns of openings along an array direction orthogonal to the scan direction. The method also includes forming a pattern of cuts or vias in or above the pattern of parallel lines to provide line breaks for the pattern of parallel lines by scanning the substrate along the scan direction. A cumulative current through the column has a non-zero and substantially uniform cumulative current value throughout the scanning.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Shakul Tandon, Mark C. Phillips, Shem O. Ogadhoh, John A. Swanson
  • Publication number: 20210125992
    Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure above a substrate. The interconnect structure may include an inter-level dielectric (ILD) layer and a separation layer above the ILD layer. A first conductor and a second conductor may be within the ILD layer. The first conductor may have a first physical configuration, and the second conductor may have a second physical configuration different from the first physical configuration. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 22, 2017
    Publication date: April 29, 2021
    Inventors: Travis LAJOIE, Tahir GHANI, Jack T. KAVALIEROS, Shem O. OGADHOH, Yih WANG, Bernhard SELL, Allen GARDINER, Blake LIN, Juan G. ALZATE VINASCO, Pei-Hua WANG, Chieh-Jen KU, Abhishek A. SHARMA
  • Publication number: 20210098373
    Abstract: Integrated circuit structures having differentiated interconnect lines in a same dielectric layer, and methods of fabricating integrated circuit structures having differentiated interconnect lines in a same dielectric layer, are described. In an example, an integrated circuit structure includes an inter-layer dielectric (ILD) layer above a substrate. A plurality of conductive interconnect lines is in the ILD layer. The plurality of conductive interconnect lines includes a first interconnect line having a first height, and a second interconnect line immediately laterally adjacent to but spaced apart from the first interconnect line, the second interconnect line having a second height less than the first height.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Juan G. ALZATE VINASCO, Chieh-Jen KU, Shem O. OGADHOH, Allen B. GARDINER, Blake C. LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
  • Publication number: 20190305081
    Abstract: An integrated circuit includes a base, a first transistor structure on or above the base, and a second transistor structure on or above the base, where the second transistor structure is spaced from the first transistor structure. An insulator material at least partially encapsulates an airgap or other gas pocket laterally between the first transistor structure and the second transistor structure. The gas pocket is at least 5 nm in height and at least 5 nm wide according to an embodiment, and in some cases is as tall or taller than active device layers of the transistor structures it separates.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Applicant: INTEL CORPORATION
    Inventors: Travis W. LaJoie, Abhishek A. Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem O. Ogadhoh, Allen B. Gardiner, Blake C. Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
  • Publication number: 20190164723
    Abstract: Lithographic apparatuses suitable for complementary e-beam lithography (CEBL) are described. In an example, a method of forming a pattern for a semiconductor structure includes forming a pattern of parallel lines above a substrate. The method also includes aligning the substrate in an e-beam tool to provide the pattern of parallel lines parallel with a scan direction of the e-beam tool. The e-beam tool includes a column having a blanker aperture array (BAA) with a staggered pair of columns of openings along an array direction orthogonal to the scan direction. The method also includes forming a pattern of cuts or vias in or above the pattern of parallel lines to provide line breaks for the pattern of parallel lines by scanning the substrate along the scan direction. A cumulative current through the column has a non-zero and substantially uniform cumulative current value throughout the scanning.
    Type: Application
    Filed: September 30, 2016
    Publication date: May 30, 2019
    Inventors: Shakul TANDON, Mark C. PHILLIPS, Shem O. OGADHOH, John A. SWANSON
  • Patent number: 9046761
    Abstract: Techniques are disclosed for using sub-resolution phased assist features (SPAF) in a lithography mask to improve through process pattern fidelity and/or mitigate inverted aerial image problems. The technique also may be used to improve image contrast in non-inverted weak image sites. The use of SPAF in accordance with some such embodiments requires no adjustment to existing design rules, although adjustments can be made to enable compliance with mask inspection constraints. The use of SPAF also does not require changing existing fab or manufacturing processes, especially if such processes already comprehend phased shift mask capabilities. The SPAFs can be used to enhance aerial image contrast, without the SPAFs themselves printing. In addition, the SPAF phase etch depth can be optimized so as to make adjustments to a given predicted printed feature critical dimension.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 2, 2015
    Assignee: INTEL CORPORATION
    Inventors: Shem O. Ogadhoh, Charles H. Wallace, Ryan Pearman, Sven Henrichs, Arvind Sundaramurthy, Swaminathan Sivakumar
  • Patent number: 8959465
    Abstract: Techniques are provided for determining how thick or how deep to make the phased regions of a lithography mask. One example embodiment provides a method that includes: providing a first mask layout design including a first test set, and providing a second mask layout design including a second test set, wherein the second test set is larger than the first test set; simulating critical dimensions through focus of structures of interest in the first test set for a range of phase depths/thicknesses, and selecting an initial preferred mask phase depth/thickness based on results of the simulating; and generating a fast thick-mask model (FTM) at the initial preferred phase depth/thickness, and correcting the second test set of the second mask layout design using the FTM, thereby providing an optimized mask layout design. A mask having the optimized mask layout design may be implemented to give the optimum patterning.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 17, 2015
    Assignee: Intel Corporation
    Inventors: Paul A. Nyhus, Shem O. Ogadhoh, Swaminathan Sivakumar, Seongtae Jeong
  • Publication number: 20140053117
    Abstract: Techniques are provided for determining how thick or how deep to make the phased regions of a lithography mask. One example embodiment provides a method that includes: providing first mask layout design including a first test set, and providing a second mask layout design including a second test set, wherein the second test set is larger than the first test set; simulating critical dimensions through focus of structures of interest in the first test set for a range of phase depths/thicknesses, and selecting an initial preferred mask phase depth/thickness based on results of the simulating; and generating a fast thick-mask model (FTM) at the initial preferred phase depth/thickness, and correcting the second test set of the second mask layout design using the FTM, thereby providing an optimized mask layout design. A mask having the optimized mask layout design may be implemented to give the optimum patterning.
    Type: Application
    Filed: December 30, 2011
    Publication date: February 20, 2014
    Inventors: Paul A. Nyhus, Shem O. Ogadhoh, Swaminathan Sivakumar, Seongtae Jeong
  • Publication number: 20130216941
    Abstract: Techniques are disclosed for using sub-resolution phased assist features (SPAF) in a lithography mask to improve through process pattern fidelity and/or mitigate inverted aerial image problems. The technique also may be used to improve image contrast in non-inverted weak image sites. The use of SPAF in accordance with some such embodiments requires no adjustment to existing design rules, although adjustments can be made to enable compliance with mask inspection constraints. The use of SPAF also does not require changing existing fab or manufacturing processes, especially if such processes already comprehend phased shift mask capabilities. The SPAFs can be used to enhance aerial image contrast, without the SPAFs themselves printing. In addition, the SPAF phase etch depth can be optimized so as to make adjustments to a given predicted printed feature critical dimension.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Inventors: Shem O. Ogadhoh, Charles H. Wallace, Ryan Pearman, Sven Henrichs, Arvind Sundaramurthy, Swaminathan Sivakumar
  • Patent number: 8399157
    Abstract: Techniques are disclosed for using sub-resolution phased assist features (SPAF) in a lithography mask to improve through process pattern fidelity and/or mitigate inverted aerial image problems. The technique also may be used to improve image contrast in non-inverted weak image sites. The use of SPAF in accordance with some such embodiments requires no adjustment to existing design rules, although adjustments can be made to enable compliance with mask inspection constraints. The use of SPAF also does not require changing existing fab or manufacturing processes, especially if such processes already comprehend phased shift mask capabilities. The SPAFs can be used to enhance aerial image contrast, without the SPAFs themselves printing.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 19, 2013
    Assignee: Intel Corporation
    Inventor: Shem O. Ogadhoh
  • Publication number: 20120164562
    Abstract: Techniques are disclosed for using sub-resolution phased assist features (SPAF) in a lithography mask to improve through process pattern fidelity and/or mitigate inverted aerial image problems. The technique also may be used to improve image contrast in non-inverted weak image sites. The use of SPAF in accordance with some such embodiments requires no adjustment to existing design rules, although adjustments can be made to enable compliance with mask inspection constraints. The use of SPAF also does not require changing existing fab or manufacturing processes, especially if such processes already comprehend phased shift mask capabilities. The SPAFs can be used to enhance aerial image contrast, without the SPAFs themselves printing.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventor: Shem O. Ogadhoh