Patents by Inventor Shen JIANG

Shen JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11991937
    Abstract: A semiconductor device includes a bottom electrode, a top electrode over the bottom electrode, a switching layer between the bottom electrode and the top electrode, wherein the switching layer is configured to store data, a capping layer in contact with the switching layer, wherein the capping layer is configured to extract active metal ions from the switching layer, an ion reservoir region formed in the capping layer, a diffusion barrier layer between the bottom electrode and the switching layer, wherein the diffusion barrier layer includes palladium (Pd), cobalt (Co), or a combination thereof and is configured to obstruct diffusion of the active metal ions between the switching layer and the bottom electrode, and the diffusion layer has a concaved top surface, and a passivation layer covering a portion of the top electrode, and wherein the passivation layer directly contacts a top surface of the switching layer.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hai-Dang Trinh, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20240162088
    Abstract: An integrated circuit device includes an interconnect layer, a memory structure, a third conductive feature, and a fourth conductive feature. The interconnect layer includes a first conductive feature and a second conductive feature. The memory structure is over and in contact with the first conductive feature. The memory structure includes at least a resistance switching element over the first conductive feature. The third conductive feature, including a first conductive line, is over and in contact with the second conductive feature. The fourth conductive feature is over and in contact with the memory structure. The fourth conductive feature includes a second conductive line, a top surface of the first conductive line is substantially level with a top surface of the second conductive line, and a bottom surface of the first conductive line is lower than a bottommost portion of a bottom surface of the second conductive line.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsia-Wei CHEN, Fu-Ting SUNG, Yu-Wen LIAO, Wen-Ting CHU, Fa-Shen JIANG, Tzu-Hsuan YEH
  • Publication number: 20240158994
    Abstract: An adjustment method of moisture content and dense state for a hydrogel improved subgrade based on weather-resistance during an in-service period, including: step 1: carrying out surface cleaning and compaction of ground; step 2: preparing hydrogel improved subgrade raw material; step 3: paving the prepared material on the surface to form first-layer improved subgrade; and step 4: paving plain soil subgrade onto the first-layer. The method combines the water absorption and release function of the modified resin and the characteristic of the gel state thereof, to pave the improved subgrade in layers, which can absorb water and slightly expand when the water content in the subgrade is increased to a certain threshold value, and a strength and compactness protective layer can also be formed at the connection sections of the ground and the subgrade, and the subgrade and the pavement, to prevent the pot-cover effect from occurring.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 16, 2024
    Applicants: SHANDONG JIAOTONG UNIVERSITY, SHANDONG UNIVERSITY, CHONGQING UNIVERSITY, JINAN JINYUE HIGHWAY ENGINEERING CO., LTD.
    Inventors: Xinzhuang CUI, Jin LI, Qing JIN, Shen ZUO, Dalu XIONG, Peng JIANG, Xiaoning ZHANG, Yefeng DU, Kai YUAN, Chongsheng XIN
  • Publication number: 20240138272
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a first conductive structure over a substrate. A data storage structure overlies the first conductive structure. The data storage structure comprises a first dielectric layer on the first conductive structure and a second dielectric layer on the first dielectric layer. The first dielectric layer comprises a dielectric material and a first dopant having a concentration that changes from a top surface of the first dielectric layer in a direction towards the first conductive structure. A second conductive structure overlies the data storage structure.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Patent number: 11967611
    Abstract: A multilayer structure, a capacitor structure and an electronic device are provided. The multilayer structure includes a first dielectric layer, a second dielectric layer and an intermediate dielectric layer. The intermediate dielectric layer is disposed between the first dielectric layer and the second dielectric layer. A material of the intermediate dielectric layer is represented by a formula of AxB1-xO, wherein A includes hafnium (Hf), zirconium (Zr), lanthanum (La) or tantalum (Ta), B includes lanthanum (La), aluminum (Al) or tantalum (Ta), A is different from B, O is oxygen, and x is a number less than 1 and greater than 0.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Fa-Shen Jiang, Bi-Shen Lee, Hsun-Chung Kuang
  • Patent number: 11961545
    Abstract: Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hsun-Chung Kuang, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Patent number: 11963468
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnects and a diffusion barrier layer on the bottom electrode. The diffusion barrier layer has an inner upper surface that is arranged laterally between and vertically below an outer upper surface of the diffusion barrier film. The outer upper surface wraps around the inner upper surface in a top-view of the diffusion barrier layer. A data storage structure is separated from the bottom electrode by the diffusion barrier layer. A top electrode is arranged over the data storage structure.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20240095424
    Abstract: Aspects of the disclosure are directed to automatically determining floor planning in chips, which factors in memory macro alignment. A deep reinforcement learning (RL) agent can be trained to determine optimal placements for the memory macros, where memory macro alignment can be included as a regularization cost to be added to the placement objective as a RL reward. Tradeoffs between the placement objective and alignment of macros can be controlled by a tunable alignment parameter.
    Type: Application
    Filed: August 18, 2022
    Publication date: March 21, 2024
    Inventors: Ebrahim Mohammadgholi Songhori, Shen Wang, Azalia Mirhoseini, Anna Goldie, Roger Carpenter, Wenjie Jiang, Young-Joon Lee, James Laudon
  • Publication number: 20240074217
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Application
    Filed: November 10, 2023
    Publication date: February 29, 2024
    Inventors: Fa-Shen JIANG, Hsia-Wei CHEN, Hai-Dang TRINH, Hsun-Chung KUANG
  • Patent number: 11894267
    Abstract: A method for fabricating an integrated circuit device is provided. The method includes forming an interconnect layer over a substrate, wherein the interconnect layer has a first interlayer dielectric layer, a first conductive feature in a first portion of the first interlayer dielectric layer, and a second conductive feature in a second portion of the first interlayer dielectric layer; depositing a dielectric layer over the interconnect layer; removing a first portion of the dielectric layer over the first conductive feature and the first portion of the first interlayer dielectric layer, and remaining a second portion of the dielectric layer over the second conductive feature and the second portion of the first interlayer dielectric layer; and forming a memory structure over the first conductive feature.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsia-Wei Chen, Fu-Ting Sung, Yu-Wen Liao, Wen-Ting Chu, Fa-Shen Jiang, Tzu-Hsuan Yeh
  • Patent number: 11895933
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip, the method includes forming a bottom electrode over a substrate. A first switching layer is formed on the bottom electrode. The first switching layer comprises a dielectric material doped with a first dopant. A second switching layer is formed over the first switching layer. An atomic percentage of the first dopant in the second switching layer is less than an atomic percentage of the first dopant in the first switching layer. A top electrode is formed over the second switching layer.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Publication number: 20240019555
    Abstract: The present application relates to a method and device for laser detection, and a non-transitory computer-readable storage medium. The method includes: emitting a secondary emergent laser in a current detection cycle; receiving and analyzing an echo laser corresponding to the secondary emergent laser to obtain a detection result; determining an operation mode of a primary emergent laser in a next detection cycle according to the detection result; and emitting the primary emergent laser in the next detection cycle according to the operation mode of the primary emergent laser.
    Type: Application
    Filed: July 9, 2023
    Publication date: January 18, 2024
    Applicant: SUTENG INNOVATION TECHNOLOGY CO., LTD.
    Inventor: Shen JIANG
  • Publication number: 20240023464
    Abstract: Some embodiments relate to an integrated chip including a first conductive structure over a substrate. A first dielectric layer is on the first conductive structure. A second dielectric layer is on the first dielectric layer, where thermal conductivities of the first and second dielectric layers are different from one another. A second conductive structure is over the second dielectric layer.
    Type: Application
    Filed: July 31, 2023
    Publication date: January 18, 2024
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin
  • Publication number: 20240019554
    Abstract: A control method and device for multichannel laser emission, and a computer readable storage medium are disclosed. The method includes: controlling the emission of secondary emergent lasers of a plurality of channels of a multichannel LiDAR in a time-sharing manner during an operation cycle of the multichannel LiDAR; and emitting a primary emergent laser at a preset reference moment of each channel or encoding and modulating the emission of the primary emergent laser according to the detection result of the secondary emergent lasers of the plurality of channels.
    Type: Application
    Filed: July 9, 2023
    Publication date: January 18, 2024
    Applicant: SUTENG INNOVATION TECHNOLOGY CO., LTD.
    Inventor: Shen JIANG
  • Patent number: 11856801
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Fa-Shen Jiang, Hsia-Wei Chen, Hai-Dang Trinh, Hsun-Chung Kuang
  • Publication number: 20230400558
    Abstract: The present application provides a lidar receiving apparatus, a lidar system, a laser ranging method, a laser ranging controller, and a computer readable storage medium. The lidar receiving apparatus includes: a photodetector, which is configured to receive a reflected laser signal and to convert the reflected laser signal into a current signal when a bias voltage of the photodetector is greater than a breakdown voltage of the same; a ranging circuit, which is connected with the photodetector and configured to calculate distance data according to the current signal; and a power control circuit, which is connected with the photodetector and configured to control the bias voltage applied to the photodetector according to a predefined rule.
    Type: Application
    Filed: August 20, 2023
    Publication date: December 14, 2023
    Applicant: SUTENG INNOVATION TECHNOLOGY CO., LTD.
    Inventor: Shen JIANG
  • Publication number: 20230387190
    Abstract: A multilayer structure, a capacitor structure and an electronic device are provided. The multilayer structure includes a first dielectric layer, a second dielectric layer and an intermediate dielectric layer. The intermediate dielectric layer is disposed between the first dielectric layer and the second dielectric layer. A material of the intermediate dielectric layer is represented by a formula of AxB1?xO, wherein A includes hafnium (Hf), zirconium (Zr), lanthanum (La) or tantalum (Ta), B includes lanthanum (La), aluminum (Al) or tantalum (Ta), A is different from B, O is oxygen, and x is a number less than 1 and greater than 0.
    Type: Application
    Filed: May 30, 2022
    Publication date: November 30, 2023
    Inventors: HAI-DANG TRINH, YI YANG WEI, FA-SHEN JIANG, BI-SHEN LEE, HSUN-CHUNG KUANG
  • Publication number: 20230371288
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Fa-Shen JIANG, Hsia-Wei CHEN, Hai-Dang TRINH, Hsun-Chung KUANG
  • Publication number: 20230345847
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. A first conductive structure overlies a substrate. A second conductive structure overlies the first conductive structure. A data storage structure is disposed between the first and second conductive structures. The data storage structure includes a first dielectric layer, a second dielectric layer, and a third dielectric layer. Respective bandgaps of the first, second, and third dielectric layers are different from one another.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 26, 2023
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Patent number: 11800823
    Abstract: Some embodiments relate to a method for manufacturing a memory device. The method includes forming a bottom electrode over a substrate. A heat dispersion layer is formed over the bottom electrode. A dielectric layer is formed over the heat dispersion layer. A top electrode is formed over the dielectric layer. The heat dispersion layer comprises a first dielectric material.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin