Patents by Inventor Sheng-Chen Wang

Sheng-Chen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11991886
    Abstract: A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a first layer stack and a second layer stack successively over a substrate, where the first layer stack and the second layer stack have a same layered structure that includes a layer of a first electrically conductive material over a layer of a first dielectric material, where the first layer stack extends beyond lateral extents of the second layer stack; forming a trench that extends through the first layer stack and the second layer stack; lining sidewalls and a bottom of the trench with a ferroelectric material; conformally forming a channel material in the trench over the ferroelectric material; filling the trench with a second dielectric material; forming a first opening and a second opening in the second dielectric material; and filling the first opening and the second opening with a second electrically conductive material.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Bo-Feng Young, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20240164109
    Abstract: In an embodiment, a device includes: a word line extending in a first direction; a data storage layer on a sidewall of the word line; a channel layer on a sidewall of the data storage layer; a back gate isolator on a sidewall of the channel layer; and a bit line having a first main region and a first extension region, the first main region contacting the channel layer, the first extension region separated from the channel layer by the back gate isolator, the bit line extending in a second direction, the second direction perpendicular to the first direction.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 16, 2024
    Inventors: Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11985830
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a memory array is formed by manufacturing portions of a word line during different and separate processes, thereby allowing the portions formed first to act as a structural support during later processes that would otherwise cause undesired damage to the structures.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Cheng Yang, Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Chung-Te Lin
  • Patent number: 11985825
    Abstract: A memory array device includes a stack of transistors over a semiconductor substrate, a first transistor of the stack being disposed over a second transistor of the stack. The first transistor includes a first memory film along a first word line and a first channel region along a source line and a bit line, the first memory film being disposed between the first channel region and the first word line. The second transistor includes a second memory film along a second word line and a second channel region along the source line and the bit line, the second memory film being disposed between the second channel region and the second word line. The memory array device includes a first via electrically connected to the first word line and a second via electrically connected to the second word line, the second staircase via and the first staircase via having different widths.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20240138152
    Abstract: In accordance with embodiments, a memory array is formed with a multiple patterning process. In embodiments a first trench is formed within a multiple layer stack and a first conductive material is deposited into the first trench. After the depositing the first conductive material, a second trench is formed within the multiple layer stack, and a second conductive material is deposited into the second trench. The first conductive material and the second conductive material are etched.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Feng-Cheng Yang, Meng-Han Lin, Sheng-Chen Wang, Han-Jong Chia, Chung-Te Lin
  • Patent number: 11968838
    Abstract: A device includes a semiconductor substrate; a word line extending over the semiconductor substrate; a memory film extending along the word line, wherein the memory film contacts the word line; a channel layer extending along the memory film, wherein the memory film is between the channel layer and the word line; source lines extending along the memory film, wherein the memory film is between the source lines and the word line; bit lines extending along the memory film, wherein the memory film is between the bit lines and the word line; and isolation regions, wherein each isolation region is between a source line and a bit line, wherein each of the isolation regions includes an air gap and a seal extending over the air gap.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11950428
    Abstract: A memory device includes a first stacking structure, a second stacking structure, a plurality of first isolation structures, gate dielectric layers, channel layers and conductive pillars. The first stacking structure includes a plurality of first gate layers, and a second stacking structure includes a plurality of second gate layers, where the first stacking structure and the second stacking structure are located on a substrate and separated from each other through a trench. The first isolation structures are located in the trench, where a plurality of cell regions are respectively confined between two adjacent first isolation structures of the first isolation structures in the trench, where the first isolation structures each includes a first main layer and a first liner surrounding the first main layer, where the first liner separates the first main layer from the first stacking structure and the second stacking structure.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20240098959
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240097010
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240088899
    Abstract: A logic cell structure includes a first portion, a second portion and a third portion. The first portion, arranged to be a first layout of a first semiconductor element, is placed in a first cell row of a substrate area extending in a first direction. The second portion, arranged to be a second layout of a second semiconductor element, is placed in a second cell row of the substrate area. The third portion is arranged to be a third layout of an interconnecting path used for coupling the first semiconductor element and the second semiconductor element. The first, second and third portions are bounded by a bounding box with a height in a second direction and a width in the first direction. Respective centers of the first portion and the second portion are arranged in a third direction different from each of the first direction and the second direction.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 14, 2024
    Inventors: SHAO-HUAN WANG, CHUN-CHEN CHEN, SHENG-HSIUNG CHEN, KUO-NAN YANG
  • Patent number: 11923433
    Abstract: A method for manufacturing a semiconductor device includes forming a first dielectric layer over a semiconductor fin. The method includes forming a second dielectric layer over the first dielectric layer. The method includes exposing a portion of the first dielectric layer. The method includes oxidizing a surface of the second dielectric layer while limiting oxidation on the exposed portion of the first dielectric layer.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Liang Pan, Yungtzu Chen, Chung-Chieh Lee, Yung-Chang Hsu, Chia-Yang Hung, Po-Chuan Wang, Guan-Xuan Chen, Huan-Just Lin
  • Publication number: 20240064984
    Abstract: A 3D memory array includes a row of stacks, each stack having alternating gate strips and dielectric strips. Dielectric plugs are disposed between the stacks and define cell areas. A data storage film and a channel film are disposed adjacent the stacks on the sides of the cell areas. The middles of the cell areas are filled with an intracell dielectric. Source lines and drain lines form vias through the intracell dielectric. The source lines and the drain lines are each provided with a bulge toward the interior of the cell area. The bulges increase the areas of the source line and the drain line without reducing the channel lengths. In some of these teachings, the areas of the source lines and the drain lines are increased by restricting the data storage film or the channel layer to the sides of the cell areas adjacent the stacks.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Sheng-Chen Wang, Feng-Cheng Yang, Meng-Han Lin, Han-Jong Chia
  • Patent number: 11910616
    Abstract: In an embodiment, a device includes: a word line extending in a first direction; a data storage layer on a sidewall of the word line; a channel layer on a sidewall of the data storage layer; a back gate isolator on a sidewall of the channel layer; and a bit line having a first main region and a first extension region, the first main region contacting the channel layer, the first extension region separated from the channel layer by the back gate isolator, the bit line extending in a second direction, the second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11903216
    Abstract: In accordance with embodiments, a memory array is formed with a multiple patterning process. In embodiments a first trench is formed within a multiple layer stack and a first conductive material is deposited into the first trench. After the depositing the first conductive material, a second trench is formed within the multiple layer stack, and a second conductive material is deposited into the second trench. The first conductive material and the second conductive material are etched.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Cheng Yang, Meng-Han Lin, Sheng-Chen Wang, Han-Jong Chia, Chung-Te Lin
  • Publication number: 20240032304
    Abstract: A memory device, a semiconductor device and a manufacturing method of the memory device are provided. The memory device includes first, second and third stacking structures, first and second channel structures, a gate dielectric layer, a switching layer, and first and second gate structures. The first, second and third stacking structures are laterally spaced apart from one another, and respectively comprise a conductive layer, an isolation layer and a channel layer. The third stacking structure is located between the first and second stacking structures. The first channel structure extends between the channel layers in the first and third stacking structures. The second channel structure extends between the channel layers in the second and third stacking structures. The gate dielectric layer and the first gate structure wrap around the first channel structure. The switching layer and the second gate structure wrap around the second channel structure.
    Type: Application
    Filed: April 26, 2023
    Publication date: January 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Han-Jong Chia
  • Patent number: 11862713
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11856743
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20230387269
    Abstract: A semiconductor structure includes a first fin and a second fin protruding from a substrate, isolation features over the substrate to separate the first and the second fins, where a top surface of each of the first and the second fins is below a top surface of the isolation features, inner fin spacers disposed along inner sidewalls of the first and the second fins, where the inner fin spacers have a first height measured from a top surface of the isolation features, outer fin spacers disposed along outer sidewalls of the first and the second fins, where the outer fin spacers have a second height measured from the top surface of the isolation features that is less than the first height, and a source/drain (S/D) structure merging the first and the second fins, where the S/D structure includes an air gap having a top portion over the inner fin spacers.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Chia-Ta Yu, Sheng-Chen Wang, Feng-Cheng Yang, Yen-Ming Chen, Sai-Hooi Yeong
  • Publication number: 20230377624
    Abstract: Routing arrangements for 3D memory arrays and methods of forming the same are disclosed. In an embodiment, a memory array includes a first word line extending from a first edge of the memory array in a first direction, the first word line having a length less than a length of a second edge of the memory array perpendicular to the first edge of the memory array; a second word line extending from a third edge of the memory array opposite the first edge of the memory array, the second word line extending in the first direction, the second word line having a length less than the length of the second edge of the memory array; a memory film contacting the first word line; and an OS layer contacting a first source line and a first bit line, the memory film being disposed between the OS layer and the first word line.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11805652
    Abstract: A 3D memory array includes a row of stacks, each stack having alternating gate strips and dielectric strips. Dielectric plugs are disposed between the stacks and define cell areas. A data storage film and a channel film are disposed adjacent the stacks on the sides of the cell areas. The middles of the cell areas are filled with an intracell dielectric. Source lines and drain lines form vias through the intracell dielectric. The source lines and the drain lines are each provided with a bulge toward the interior of the cell area. The bulges increase the areas of the source line and the drain line without reducing the channel lengths. In some of these teachings, the areas of the source lines and the drain lines are increased by restricting the data storage film or the channel layer to the sides of the cell areas adjacent the stacks.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Feng-Cheng Yang, Meng-Han Lin, Han-Jong Chia