Patents by Inventor Sheng-Chi Chen

Sheng-Chi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240186356
    Abstract: Image sensors and methods for forming the same are provided. A semiconductor device according to the present disclosure includes a semiconductor layer, a plurality of metal isolation features disposed in the semiconductor layer, a metal grid disposed directly over the plurality of metal isolation features, and a plurality of microlens features disposed over the metal grid.
    Type: Application
    Filed: February 12, 2024
    Publication date: June 6, 2024
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20240184615
    Abstract: An electronic device capable of performing multi-camera intelligent switching and a multi-camera intelligent switching method thereof are provided. The electronic device includes a plurality of camera device media foundation transform (camara DMFT) units, an integrated DMFT unit and a mix camera agent. Each of the camera DMFT units is connected to one of a plurality of cameras. The integrated DMFT unit is serially connected to one of the camera DMFT units. The mix camera agent is connected to the cameras. The mix camera agent is used for obtaining a switching notification signal. The integrated DMFT unit switches a serial path between the integrated DMFT unit and one of the camera DMFT units according to the switching notification signal.
    Type: Application
    Filed: November 30, 2023
    Publication date: June 6, 2024
    Applicant: Acer Incorporated
    Inventors: Sheng-Hsin FAN, Chao-Kuang YANG, Liang-Chi CHEN
  • Patent number: 11988831
    Abstract: A method of displaying a rear-view image and a mobile device using the method are provided. The method includes: receiving the rear-view image; displaying a virtual dashboard through a display; and displaying the rear-view image on a default area of the virtual dashboard in response to receiving a signal associated with a direction indicator light, wherein the default area corresponds to the direction indicator light.
    Type: Grant
    Filed: February 14, 2023
    Date of Patent: May 21, 2024
    Assignee: Kinpo Electronics, Inc.
    Inventors: Yu Chi Chen, Hsien Chung Chen, Sheng-Chang Wu
  • Patent number: 11966133
    Abstract: An electronic device is disclosed. The electronic device includes a substrate, a plurality of color filters disposed on the substrate, an optical film disposed on the plurality of color filter, and a defect disposed between the substrate and the optical film. The optical film has a first base, a protective layer on the first base, and a second base between the first base and the protective layer and having a first processed area. In a top view of the electronic device, the first processed area corresponds to the defect and at least partially overlaps at least two color filters.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: April 23, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tai-Chi Pan, Chin-Lung Ting, I-Chang Liang, Chih-Chiang Chang Chien, Po-Wen Lin, Kuang-Ming Fan, Sheng-Nan Chen
  • Publication number: 20240125736
    Abstract: The present invention relates to a Cu ion sensor, which greatly improves the sensitivity to Cu by a nitrogen-rich surface of a copper nitride thin film doped with a metal material. The present invention also relates to a Cu ion sensing method, in which Cu2+ is detected by contacting the Cu ion sensor of the present invention with the solution to be tested, and using the change in electrical conductivity of a copper nitride film doped with a metal material in the presence of Cu2+ in the solution.
    Type: Application
    Filed: December 29, 2022
    Publication date: April 18, 2024
    Inventors: Sajal BIRING, Sheng-Chi Chen, Annada Sankar SADHU, Min-Chen Chuang, Kuan-Yu Chien
  • Publication number: 20240114698
    Abstract: A semiconductor device includes a substrate, a bottom electrode, a ferroelectric layer, a noble metal electrode, and a non-noble metal electrode. The bottom electrode is over the substrate. The ferroelectric layer is over the bottom electrode. The noble metal electrode is over the ferroelectric layer. The non-noble metal electrode is over the noble metal electrode.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU, Alexander KALNITSKY
  • Publication number: 20240074119
    Abstract: An immersion cooling system includes a pressure seal tank, an electronic apparatus, a pressure balance pipe and a relief valve. The pressure seal tank is configured to store coolant. A vapor space is formed in the pressure seal tank above the liquid level of the coolant. The electronic apparatus is completely immersed in the coolant. The pressure balance pipe has a gas collection length. The first port of the pressure balance pipe is disposed on the top surface of the pressure seal tank. The relief valve is disposed on the second port of the pressure balance pipe. The second port is farther away from the top surface of the pressure seal tank than the first port. The gas collection length of the pressure equalization tube allows the concentration of vaporized coolant at the first port to be greater than the concentration of vaporized coolant at the second port.
    Type: Application
    Filed: May 9, 2023
    Publication date: February 29, 2024
    Inventors: Ren-Chun CHANG, Wei-Chih LIN, Sheng-Chi WU, Wen-Yin TSAI, Li-Hsiu CHEN
  • Patent number: 11915977
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Publication number: 20170159169
    Abstract: The invention provides a process for manufacturing nickel oxide films with high conductivity, comprising steps of: operating a high power impulse magnetron sputtering system, HIPIMS system, in an argon and oxygen mixture, at peak power density higher than 1000 W/cm2 under a low duty cycle; and sputtering a Ni target to form the p-type NiO film with high conductivity on a substrate, the duty cycle=ton/(ton+toff), wherein ton is time of pulse on and toff is time of pulse off.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 8, 2017
    Inventors: Sheng-Chi CHEN, Tsung-Yen KUO, Hsin-Chih LIN
  • Publication number: 20160180874
    Abstract: This invention discloses a hard magnetic alloy thin film used in a high density perpendicular magnetic recording medium. This film incorporates a glass substrate and a ferromagnetic layer formed on the glass substrate. The ferromagnetic layer is deposited onto the substrate using a sputtering deposition and an annealing. After annealing, a single-layered ferromagnetic film with high perpendicular magnetic anisotropy is achieved.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Sheng-Chi CHEN, Ta-Huang SUN
  • Patent number: 8902110
    Abstract: An all-metal casing structure includes a casing unit, a first substrate unit, a second substrate unit, an antenna unit and a conductive unit. The casing unit includes at least one metal casing having at least one through opening. The first substrate unit includes at least one first substrate body disposed in the metal casing and neighboring to the through opening. The second substrate unit includes at least one second substrate body disposed in the metal casing and neighboring to the first substrate body. The antenna unit includes at least one antenna module disposed on the first substrate body and corresponding to the through opening, and the antenna module is electrically connected to the second substrate body. The conductive unit includes at least two conductive elements separated from each other by a predetermined distance and electrically connected between the metal casing and the first substrate body.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 2, 2014
    Assignee: Inpaq Technology Co., Ltd.
    Inventors: Yan-Ming Hong, Chih-Wei Chen, Chih-Ming Su, Sheng-Chi Chen
  • Publication number: 20140105682
    Abstract: An engaging fixing module including a carrying main body, a shell surface, a placement adjusting component, and an engaging element is provided. The carrying main body includes a carrying surface and a first protruding column. The shell surface is assembled on the carrying main body and includes a second protruding column. The placement adjusting component is disposed on the carrying surface. The engaging element is disposed on the placement adjusting component, and includes a resist structure and moves relative to the carrying surface when an external magnetic force is applied on the placement adjusting component. When the engaging element moves away from the carrying surface, the second protruding column resists the resist structure. When the engaging element moves towards the carrying surface so that the resist structure is aligned to the first protruding column, the shell surface is slidable relative to the carrying surface.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: QISDA Corporation
    Inventor: Sheng-Chi Chen
  • Publication number: 20140015727
    Abstract: An all-metal casing structure includes a casing unit, a first substrate unit, a second substrate unit, an antenna unit and a conductive unit. The casing unit includes at least one metal casing having at least one through opening. The first substrate unit includes at least one first substrate body disposed in the metal casing and neighboring to the through opening. The second substrate unit includes at least one second substrate body disposed in the metal casing and neighboring to the first substrate body. The antenna unit includes at least one antenna module disposed on the first substrate body and corresponding to the through opening, and the antenna module is electrically connected to the second substrate body. The conductive unit includes at least two conductive elements separated from each other by a predetermined distance and electrically connected between the metal casing and the first substrate body.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: INPAQ TECHNOLOGY CO., LTD.
    Inventors: YAN-MING HONG, CHIH-WEI CHEN, CHIH-MING SU, SHENG-CHI CHEN
  • Publication number: 20110171494
    Abstract: The present invention discloses a discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy. The discontinuous islanded ferromagnetic recording film includes a substrate and a ferromagnetic layer. The ferromagnetic layer is formed on the substrate and annealed by a high-temperature vacuum annealing process. After annealing, a surface energy difference existed between the ferromagnetic layer and the substrate turns the ferromagnetic layer into well-separated and discontinuous islanded ferromagnetic particles. Each islanded ferromagnetic particle is thought of a single magnetic domain, which is beneficial to achieve a discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy.
    Type: Application
    Filed: April 5, 2010
    Publication date: July 14, 2011
    Inventors: GER-PIN LIN, Po-Cheng Kuo, Sheng-Chi Chen, Chih-Lung Shen, Kai-Tze Huang, Ching-Ray Chang
  • Publication number: 20110104517
    Abstract: The present invention discloses a single-layered recording film with perpendicular magnetic anisotropy. The single-layered recording film includes a substrate and a ferromagnetic layer. The ferromagnetic layer is formed on the substrate and annealed by a rapid thermal annealing process. After annealing, the average grain size of the single-layered recording film is close to the film thickness of ferromagnetic layer, which is beneficial to achieve a single-layered recording film with perpendicular magnetic anisotropy.
    Type: Application
    Filed: March 23, 2010
    Publication date: May 5, 2011
    Inventors: SHENG-CHI CHEN, Chih-Lung Shen, Ger-Pin Lin, Ta-Huang Sun, Tsung-Yen Kuo, Po-Cheng Kuo, Ching-Ray Chang
  • Publication number: 20100124673
    Abstract: A high density magnetic recording film by using a rapid thermal annealing process is provided. The high density magnetic recording film includes a substrate; and a ferromagnetic layer formed on the substrate; wherein the rapid thermal annealing process is performed for the ferromagnetic layer at a temperature range of 600 to 800° C. for 5 to 180 seconds with a heating ramp rate of 60 to 100° C./sec so as to obtain the high density magnetic recording film.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 20, 2010
    Inventors: Sheng-Chi Chen, Po-Cheng Kuo, Chi-Long Shen, Sung-po Chen, Ching-Ray Chang
  • Publication number: 20090092858
    Abstract: The perpendicular magnetic recording medium of the present invention includes a substrate, a non-magnetic layer, a ferromagnetic layer and an antiferromagnetic oxide. The non-magnetic layer is formed on the substrate and the ferromagnetic layer is formed on the non-magnetic layer. The antiferromagnetic oxide is formed in the ferromagnetic layer after the perpendicular magnetic recording medium is annealed by an annealing process. An exchange coupling interaction between the antiferromagnetic oxide and the ferromagnetic materials is introduced.
    Type: Application
    Filed: May 30, 2008
    Publication date: April 9, 2009
    Inventors: Sheng-Chi Chen, Po-Cheng Kuo, Chi-Long Shen, Shang-Lin Hsu, Ching-Ray Chang
  • Publication number: 20060021871
    Abstract: A method for fabricating an L10 alloy film is provided. The method includes steps of (a) providing a substrate; (b) heating the substrate as a preheated substrate at a first temperature ranged from 100° C. to 600° C. for a time period ranged from 5 minutes to 120 minutes, and then cooling the substrate to room temperature in the sputtering chamber; (c) depositing an alloy film on the preheated substrate; and (d) annealing the alloy film at a second temperature ranged from 200° C. to 500° C. to form the alloy film.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 2, 2006
    Inventors: Po-Cheng Kuo, Huei-Li Huang, Jen-Hwa Hsu, Ching-Ray Chang, An-Cheng Sun, Sheng-Chi Chen, Chun-Yuan Chou, Chang-Tai Lee, Huang-Wei Chang
  • Publication number: 20040084298
    Abstract: Techniques for fabricating magnetic granular films for high-density magnetic data storage, where magnetic grains are dispersed in a non-magnetic amorphous matrix and each are surrounded by a grain-confining material which inhibits growth of grains during annealing.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Y.D. Yao, Po-Cheng Kuo, Sheng-Chi Chen, An Cheng Sun, Chen-Chieh Chiang