Patents by Inventor Sheng-Ming Wang

Sheng-Ming Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240178069
    Abstract: Semiconductor device structures and method for forming the same are provided. The semiconductor device structure includes a substrate and a gate stack formed over the substrate. The semiconductor device structure further includes a source/drain structure formed adjacent to the gate stack and a contact structure vertically overlapping the source/drain structure. In addition, the contact structure has a first sidewall slopes downwardly from its top surface to its bottom surface, and an angle between the first sidewall and a bottom surface of the contact structure is smaller than 89.5°.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 30, 2024
    Inventors: Lin-Yu HUANG, Sheng-Tsung WANG, Jia-Chuan YOU, Chia-Hao CHANG, Tien-Lu LIN, Yu-Ming LIN, Chih-Hao WANG
  • Patent number: 11997855
    Abstract: The present disclosure, in some embodiments, relates to a memory device. In some embodiments, the memory device has a substrate and a lower interconnect metal line disposed over the substrate. The memory device also has a selector channel disposed over the lower interconnect metal line and a selector gate electrode wrapping around a sidewall of the selector channel and separating from the selector channel by a selector gate dielectric. The memory device also has a memory cell disposed over and electrically connected to the selector channel and an upper interconnect metal line disposed over the memory cell. By placing the selector within the back-end interconnect structure, front-end space is saved, and more integration flexibility is provided.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Mauricio Manfrini, Han-Jong Chia
  • Patent number: 11991886
    Abstract: A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a first layer stack and a second layer stack successively over a substrate, where the first layer stack and the second layer stack have a same layered structure that includes a layer of a first electrically conductive material over a layer of a first dielectric material, where the first layer stack extends beyond lateral extents of the second layer stack; forming a trench that extends through the first layer stack and the second layer stack; lining sidewalls and a bottom of the trench with a ferroelectric material; conformally forming a channel material in the trench over the ferroelectric material; filling the trench with a second dielectric material; forming a first opening and a second opening in the second dielectric material; and filling the first opening and the second opening with a second electrically conductive material.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Bo-Feng Young, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20240164109
    Abstract: In an embodiment, a device includes: a word line extending in a first direction; a data storage layer on a sidewall of the word line; a channel layer on a sidewall of the data storage layer; a back gate isolator on a sidewall of the channel layer; and a bit line having a first main region and a first extension region, the first main region contacting the channel layer, the first extension region separated from the channel layer by the back gate isolator, the bit line extending in a second direction, the second direction perpendicular to the first direction.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 16, 2024
    Inventors: Meng-Han Lin, Han-Jong Chia, Sheng-Chen Wang, Feng-Cheng Yang, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11985825
    Abstract: A memory array device includes a stack of transistors over a semiconductor substrate, a first transistor of the stack being disposed over a second transistor of the stack. The first transistor includes a first memory film along a first word line and a first channel region along a source line and a bit line, the first memory film being disposed between the first channel region and the first word line. The second transistor includes a second memory film along a second word line and a second channel region along the source line and the bit line, the second memory film being disposed between the second channel region and the second word line. The memory array device includes a first via electrically connected to the first word line and a second via electrically connected to the second word line, the second staircase via and the first staircase via having different widths.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Feng-Cheng Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Patent number: 11984431
    Abstract: A structure and a method of forming are provided. The structure includes a first dielectric layer overlying a first substrate. A first connection pad is disposed in a top surface of the first dielectric layer and contacts a first redistribution line. A first dummy pad is disposed in the top surface of the first dielectric layer, the first dummy pad contacting the first redistribution line. A second dielectric layer overlies a second substrate. A second connection pad and a second dummy pad are disposed in the top surface of the second dielectric layer, the second connection pad bonded to the first connection pad, and the first dummy pad positioned in a manner that is offset from the second dummy pad so that the first dummy pad and the second dummy pad do not contact each other.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Zhi-Yang Wang, Sheng-Chau Chen, Cheng-Hsien Chou
  • Patent number: 11978669
    Abstract: The present disclosure provides a semiconductor structure. The structure includes a semiconductor substrate, a gate stack over a first portion of a top surface of the semiconductor substrate; and a laminated dielectric layer over at least a portion of a top surface of the gate stack. The laminated dielectric layer includes at least a first sublayer and a second sublayer. The first sublayer is formed of a material having a dielectric constant lower than a dielectric constant of a material used to form the second sublayer and the material used to form the second sublayer has an etch selectivity higher than an etch selectivity of the material used to form the first sublayer.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Chuang, Chia-Hao Chang, Sheng-Tsung Wang, Lin-Yu Huang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11955535
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11950428
    Abstract: A memory device includes a first stacking structure, a second stacking structure, a plurality of first isolation structures, gate dielectric layers, channel layers and conductive pillars. The first stacking structure includes a plurality of first gate layers, and a second stacking structure includes a plurality of second gate layers, where the first stacking structure and the second stacking structure are located on a substrate and separated from each other through a trench. The first isolation structures are located in the trench, where a plurality of cell regions are respectively confined between two adjacent first isolation structures of the first isolation structures in the trench, where the first isolation structures each includes a first main layer and a first liner surrounding the first main layer, where the first liner separates the first main layer from the first stacking structure and the second stacking structure.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chen Wang, Meng-Han Lin, Sai-Hooi Yeong, Yu-Ming Lin, Han-Jong Chia
  • Publication number: 20240097010
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240098959
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11894308
    Abstract: The present disclosure provides a semiconductor substrate, including a first dielectric layer with a first surface and a second surface, a first conductive via extending between the first surface and the second surface, a first patterned conductive layer on the first surface, and a second patterned conductive layer on the second surface. The first conductive via includes a bottom pattern on the first surface and a second patterned conductive layer on the second surface. The bottom pattern has at least two geometric centers corresponding to at least two geometric patterns, respectively, and a distance between one geometric center and an intersection of the two geometrical patterns is a geometric radius. A distance between the at least two geometric centers is greater than 1.4 times the geometric radius. A method for manufacturing the semiconductor substrate described herein and a semiconductor package structure having the semiconductor substrate are also provided.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 6, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Sheng-Ming Wang, Tien-Szu Chen, Wen-Chih Shen, Hsing-Wen Lee, Hsiang-Ming Feng
  • Publication number: 20210091006
    Abstract: The present disclosure provides a semiconductor substrate, including a first dielectric layer with a first surface and a second surface, a first conductive via extending between the first surface and the second surface, a first patterned conductive layer on the first surface, and a second patterned conductive layer on the second surface. The first conductive via includes a bottom pattern on the first surface and a second patterned conductive layer on the second surface. The bottom pattern has at least two geometric centers corresponding to at least two geometric patterns, respectively, and a distance between one geometric center and an intersection of the two geometrical patterns is a geometric radius. A distance between the at least two geometric centers is greater than 1.4 times the geometric radius. A method for manufacturing the semiconductor substrate described herein and a semiconductor package structure having the semiconductor substrate are also provided.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 25, 2021
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Sheng-Ming WANG, Tien-Szu CHEN, Wen-Chih SHEN, Hsing-Wen LEE, Hsiang-Ming FENG
  • Patent number: 10879159
    Abstract: A substrate, a semiconductor package thereof and a process of making the same are provided. The substrate comprises an upper circuit layer and a lower circuit layer, the upper circuit layer comprising at least one trace and at least one pad and the lower circuit layer comprising at least one trace and at least one pad, wherein the trace of the upper circuit layer and the trace of the lower circuit layer are not aligned.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: December 29, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tien-Szu Chen, Sheng-Ming Wang, Kuang-Hsiung Chen, Yu-Ying Lee
  • Patent number: 10854550
    Abstract: The present disclosure provides a semiconductor substrate, including a first dielectric layer with a first surface and a second surface, a first conductive via extending between the first surface and the second surface, a first patterned conductive layer on the first surface, and a second patterned conductive layer on the second surface. The first conductive via includes a bottom pattern on the first surface and a second patterned conductive layer on the second surface. The bottom pattern has at least two geometric centers corresponding to at least two geometric patterns, respectively, and a distance between one geometric center and an intersection of the two geometrical patterns is a geometric radius. A distance between the at least two geometric centers is greater than 1.4 times the geometric radius. A method for manufacturing the semiconductor substrate described herein and a semiconductor package structure having the semiconductor substrate are also provided.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 1, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Sheng-Ming Wang, Tien-Szu Chen, Wen-Chih Shen, Hsing-Wen Lee, Hsiang-Ming Feng
  • Patent number: 10734337
    Abstract: A micro-electromechanical systems (MEMS) package structure includes: (1) a circuit layer; (2) a MEMS die with an active surface, wherein the active surface faces the circuit layer; (3) a conductive pillar adjacent to the MEMS die; and (4) a package body encapsulating the MEMS die and the conductive pillar, and exposing a top surface of the conductive pillar.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 4, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Kuang-Hsiung Chen, Yu-Hsuan Tsai, Yu-Ying Lee, Sheng-Ming Wang, Wun-Jheng Syu
  • Patent number: 10629519
    Abstract: A semiconductor device package includes an electronic device, a conductive frame and a first molding layer. The conductive frame is disposed over and electrically connected to the electronic device, and the conductive frame includes a plurality of leads. The first molding layer covers the electronic device and a portion of the conductive frame, and is disposed between at least two adjacent ones of the leads.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 21, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tien-Szu Chen, Sheng-Ming Wang, I-Cheng Wang, Wun-Jheng Syu
  • Patent number: 10573624
    Abstract: A semiconductor device package includes: (1) a first circuit layer including a first surface and a second surface opposite to the first surface; (2) at least one electrical element disposed over the first surface of the first circuit layer and electrically connected to the first circuit layer; (3) a first molding layer disposed over the first surface of the first circuit layer, wherein the first molding layer encapsulates an edge of the at least one electrical element; (4) first electronic components disposed over the second surface of the first circuit layer and electrically connected to the first circuit layer; and (5) a second molding layer disposed over the second surface of the first circuit layer and encapsulating the first electronic components, wherein the first molding layer and the second molding layer include different molding materials.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 25, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tien-Szu Chen, Kuang-Hsiung Chen, Sheng-Ming Wang, I-Cheng Wang, Wun-Jheng Syu
  • Patent number: 10515884
    Abstract: The present disclosure relates to a semiconductor substrate structure, semiconductor package and method of manufacturing the same. The semiconductor substrate structure includes a conductive structure, a dielectric structure and a metal bump. The conductive structure has a first conductive surface and a second conductive surface. The dielectric structure has a first dielectric surface and a second dielectric surface. The first conductive surface does not protrude from the first dielectric surface. The second conductive surface is recessed from the second dielectric surface. The metal bump is disposed in a dielectric opening of the dielectric structure, and is physically and electrically connected to the second conductive surface. The metal bump has a concave surface.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: December 24, 2019
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tien-Szu Chen, Kuang-Hsiung Chen, Sheng-Ming Wang, Yu-Ying Lee, Li-Chuan Tsai, Chih-Cheng Lee
  • Patent number: 10446411
    Abstract: A semiconductor package includes: (1) a substrate; (2) a first isolation layer disposed on the substrate, the first isolation layer including an opening; (3) a pad disposed on the substrate and exposed from the opening; (4) an interconnection layer disposed on the pad; and (5) a conductive post including a bottom surface, the bottom surface having a first part disposed on the interconnection layer and a plurality of second parts disposed on the first isolation layer.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: October 15, 2019
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Tien-Szu Chen, Kuang-Hsiung Chen, Sheng-Ming Wang, Yu-Ying Lee, Yu-Tzu Peng