Patents by Inventor Shengwu Chang

Shengwu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11232925
    Abstract: An IHC ion source that employs a negatively biased cathode and one or more side electrodes is disclosed. The one or more side electrodes are left electrically unconnected in certain embodiments and are grounded in other embodiments. The floating side electrodes may be beneficial in the formation of certain species. In certain embodiments, a relay is used to allow the side electrodes to be easily switched between these two modes. By changing the configuration of the side electrodes, beam current can be optimized for different species. For example, certain species, such as arsenic, may be optimized when the side electrodes are at the same voltage as the chamber. Other species, such as boron, may be optimized when the side electrodes are left floating relative to the chamber. In certain embodiments, a controller is in communication with the relay so as to control which mode is used, based on the desired feed gas.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shengwu Chang, Frank Sinclair, Michael St. Peter
  • Patent number: 11120966
    Abstract: An IHC ion source that employs a negatively biased cathode and one or more side electrodes is disclosed. The one or more side electrodes are biased using an electrode power supply, which supplies a voltage of between 0 and ?50 volts, relative to the chamber. By adjusting the output from the electrode power supply, beam current can be optimized for different species. For example, certain species, such as arsenic, may be optimized when the side electrodes are at the same voltage as the chamber. Other species, such as boron, may be optimized when the side electrodes are at a negative voltage relative to the chamber. In certain embodiments, a controller is in communication with the electrode power supply so as to control the output of the electrode power supply, based on the desired feed gas.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: September 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Shengwu Chang, Frank Sinclair, Michael St. Peter
  • Publication number: 20210159043
    Abstract: An apparatus is provided. The apparatus may include a main chamber, an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber; an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween, and an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit tunnel. The electrode assembly may include an upper electrode, disposed on a first side of the beam path, and a plurality of lower electrodes, disposed on a second side of the beam path, the plurality of lower electrodes comprising at least three electrodes.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 11011343
    Abstract: Provided herein are approaches for increasing operational range of an electrostatic lens. An electrostatic lens of an ion implantation system may receive an ion beam from an ion source, the electrostatic lens including a first plurality of conductive beam optics disposed along one side of an ion beam line and a second plurality of conductive beam optics disposed along a second side of the ion beam line. The ion implantation system may further include a power supply in communication with the electrostatic lens, the power supply operable to supply a voltage and a current to at least one of the first and second plurality of conductive beam optics, wherein the voltage and the current deflects the ion beam at a beam deflection angle, and wherein the ion beam is accelerated and then decelerated within the electrostatic lens.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 18, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Shengwu Chang, Frank Sinclair, Antonella Cucchetti, Eric D Hermanson, Christopher Campbell
  • Publication number: 20210066019
    Abstract: An IHC ion source that employs a negatively biased cathode and one or more side electrodes is disclosed. The one or more side electrodes are biased using an electrode power supply, which supplies a voltage of between 0 and ?50 volts, relative to the chamber. By adjusting the output from the electrode power supply, beam current can be optimized for different species. For example, certain species, such as arsenic, may be optimized when the side electrodes are at the same voltage as the chamber. Other species, such as boron, may be optimized when the side electrodes are at a negative voltage relative to the chamber. In certain embodiments, a controller is in communication with the electrode power supply so as to control the output of the electrode power supply, based on the desired feed gas.
    Type: Application
    Filed: January 6, 2020
    Publication date: March 4, 2021
    Inventors: Shengwu Chang, Frank Sinclair, Michael St. Peter
  • Publication number: 20210066017
    Abstract: An IHC ion source that employs a negatively biased cathode and one or more side electrodes is disclosed. The one or more side electrodes are left electrically unconnected in certain embodiments and are grounded in other embodiments. The floating side electrodes may be beneficial in the formation of certain species. In certain embodiments, a relay is used to allow the side electrodes to be easily switched between these two modes. By changing the configuration of the side electrodes, beam current can be optimized for different species. For example, certain species, such as arsenic, may be optimized when the side electrodes are at the same voltage as the chamber. Other species, such as boron, may be optimized when the side electrodes are left floating relative to the chamber. In certain embodiments, a controller is in communication with the relay so as to control which mode is used, based on the desired feed gas.
    Type: Application
    Filed: January 6, 2020
    Publication date: March 4, 2021
    Inventors: Shengwu Chang, Frank Sinclair, Michael St. Peter
  • Patent number: 10937624
    Abstract: An apparatus is provided. The apparatus may include a main chamber, an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber; an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween, and an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit tunnel. The electrode assembly may include an upper electrode, disposed on a first side of the beam path, and a plurality of lower electrodes, disposed on a second side of the beam path, the plurality of lower electrodes comprising at least three electrodes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: March 2, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Publication number: 20210020399
    Abstract: Provided herein are approaches for increasing operational range of an electrostatic lens. An electrostatic lens of an ion implantation system may receive an ion beam from an ion source, the electrostatic lens including a first plurality of conductive beam optics disposed along one side of an ion beam line and a second plurality of conductive beam optics disposed along a second side of the ion beam line. The ion implantation system may further include a power supply in communication with the electrostatic lens, the power supply operable to supply a voltage and a current to at least one of the first and second plurality of conductive beam optics, wherein the voltage and the current deflects the ion beam at a beam deflection angle, and wherein the ion beam is accelerated and then decelerated within the electrostatic lens.
    Type: Application
    Filed: August 16, 2019
    Publication date: January 21, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Shengwu Chang, Frank Sinclair, Antonella Cucchetti, Eric D Hermanson, Christopher Campbell
  • Patent number: 10886098
    Abstract: An apparatus may include a main chamber, an entrance tunnel, having an entrance axis extending into the main chamber, and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, on a lower side of the exit tunnel; and a catch assembly, disposed within the main chamber, in a line of sight from an exterior aperture of the exit tunnel.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 5, 2021
    Assignee: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang, Eric D. Hermanson, Nevin H. Clay
  • Patent number: 10804068
    Abstract: An apparatus is provided. The apparatus may include a main chamber; an entrance tunnel having a propagation axis extending into the main chamber along a first direction; an exit tunnel, connected to the main chamber and defining an exit direction. The entrance tunnel and the exit tunnel may define a beam bend of at least 30 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit aperture, wherein the electrode assembly comprises a lower electrode, disposed on a first side of the beam path, and a plurality of electrodes, disposed on a second side of the beam path, the plurality of electrodes comprising at least five electrodes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 13, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 10790116
    Abstract: An apparatus may include a main chamber, the main chamber comprising a plurality of electrodes; an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber along a first direction; and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance axis and the exit axis define a beam bend of at least 30 degrees therebetween.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 29, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 10714301
    Abstract: Provided herein are approaches for reducing particles in an ion implanter. An electrostatic filter may include a housing and a plurality of conductive beam optics within the housing. The conductive beam optics are arranged around an ion beam-line directed towards a wafer, and may include entrance aperture electrodes proximate an entrance aperture of the housing. The conductive beam optics may further include energetic electrodes downstream along the ion beam-line from the entrance aperture electrodes, and ground electrodes downstream from the energetic electrodes. The energetic electrodes are positioned farther away from the ion beam-line than the entrance electrodes and the ground electrodes, thus causing the energetic electrodes to be physically blocked from impact by an envelope of back-sputter material returning from the wafer. The electrostatic filter may further include an electrical system for independently delivering a voltage and a current to each of the conductive beam optics.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: July 14, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Shengwu Chang, Frank Sinclair, Alexandre Likhanskii, Christopher Campbell, Robert C. Lindberg
  • Patent number: 10665415
    Abstract: An apparatus and method are provided. In one embodiment. an apparatus may include a main chamber, where the main chamber includes an electrode assembly. The electrode assembly may include a plurality of electrodes arranged between a chamber entrance and a chamber exit of the main chamber. The apparatus may include a beam tunnel, connected to the chamber entrance, configured to conduct an ion beam to the main chamber; and an electrostatic tuner, disposed in the beam tunnel, the electrostatic tuner comprising at least one tuner electrode, independently coupled to a tuner voltage assembly.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 26, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Publication number: 20200161076
    Abstract: An apparatus is provided. The apparatus may include a main chamber; an entrance tunnel having a propagation axis extending into the main chamber along a first direction; an exit tunnel, connected to the main chamber and defining an exit direction. The entrance tunnel and the exit tunnel may define a beam bend of at least 30 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit aperture, wherein the electrode assembly comprises a lower electrode, disposed on a first side of the beam path, and a plurality of electrodes, disposed on a second side of the beam path, the plurality of electrodes comprising at least five electrodes.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Publication number: 20200161078
    Abstract: An apparatus is provided. The apparatus may include a main chamber, an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber; an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween, and an electrode assembly, disposed in the main chamber, and defining a beam path between the entrance tunnel and the exit tunnel. The electrode assembly may include an upper electrode, disposed on a first side of the beam path, and a plurality of lower electrodes, disposed on a second side of the beam path, the plurality of lower electrodes comprising at least three electrodes.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Publication number: 20200161077
    Abstract: An apparatus may include a main chamber, an entrance tunnel, having an entrance axis extending into the main chamber, and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, on a lower side of the exit tunnel; and a catch assembly, disposed within the main chamber, in a line of sight from an exterior aperture of the exit tunnel.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang, Eric D. Hermanson, Nevin H. Clay
  • Publication number: 20200161089
    Abstract: An apparatus may include a main chamber, the main chamber comprising a plurality of electrodes; an entrance tunnel, the entrance tunnel having an entrance axis extending into the main chamber along a first direction; and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance axis and the exit axis define a beam bend of at least 30 degrees therebetween.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Publication number: 20200144017
    Abstract: An apparatus and method are provided. In one embodiment. an apparatus may include a main chamber, where the main chamber includes an electrode assembly. The electrode assembly may include a plurality of electrodes arranged between a chamber entrance and a chamber exit of the main chamber. The apparatus may include a beam tunnel, connected to the chamber entrance, configured to conduct an ion beam to the main chamber; and an electrostatic tuner, disposed in the beam tunnel, the electrostatic tuner comprising at least one tuner electrode, independently coupled to a tuner voltage assembly.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 7, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Alexandre Likhanskii, Frank Sinclair, Shengwu Chang
  • Patent number: 10504682
    Abstract: Provided herein are approaches for reducing particles in an ion implanter. An electrostatic filter may include a housing and a plurality of conductive beam optics within the housing. The conductive beam optics are arranged around an ion beam-line directed towards a wafer, and may include entrance aperture electrodes proximate an entrance aperture of the housing. The conductive beam optics may further include energetic electrodes downstream along the ion beam-line from the entrance aperture electrodes, and ground electrodes downstream from the energetic electrodes. The energetic electrodes are positioned farther away from the ion beam-line than the entrance electrodes and the ground electrodes, thus causing the energetic electrodes to be physically blocked from impact by an envelope of back-sputter material returning from the wafer. The electrostatic filter may further include an electrical system for independently delivering a voltage and a current to each of the conductive beam optics.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 10, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Shengwu Chang, Frank Sinclair, Alexandre Likhanskii, Christopher Campbell, Robert C. Lindberg, Eric D. Hermanson
  • Patent number: 10468224
    Abstract: An apparatus may include an electrode assembly, the electrode assembly comprising a plurality of electrodes, arranged in a plurality of electrode pairs arranged to conduct an ion beam therethrough. A given electrode pair lies along a radius of an arc describing a nominal central ray trajectory, wherein a radius of a first electrode pair and an adjacent electrode pair define an angular spacing. The plurality of electrode pairs may define a plurality of angular spacings, wherein, in a first configuration, the plurality of angular spacings are not all equal. The apparatus may also include a power supply in communication with the EM, the power supply configured to independently supply voltage to the plurality of electrodes.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 5, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Svetlana Radovanov, Ana Samolov, Shengwu Chang, Frank Sinclair, Peter L. Kellerman