Patents by Inventor Shigehiro SUGIHIRA

Shigehiro SUGIHIRA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11491972
    Abstract: An automatic parking control device is configured to: execute a rotation prediction process to calculate a predicted idle speed change portion by advancing an actual idle speed change portion by a brake response delay time; execute a driving force prediction process to calculate a predicted driving force change portion according to the predicted idle speed change portion; execute a braking force control process to calculate a change portion of a target vehicle braking force that cancels the predicted driving force change portion and instruct it to a brake device; and, when the brake response delay time is longer than an engine response delay time, execute a rotational speed control delay process to delay a target idle speed change by a rotational speed control delay time being longer than or equal to a difference obtained by subtracting the engine response delay time from the brake response delay time.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: November 8, 2022
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigehiro Sugihira
  • Publication number: 20210284136
    Abstract: An automatic parking control device is configured to: execute a rotation prediction process to calculate a predicted idle speed change portion by advancing an actual idle speed change portion by a brake response delay time; execute a driving force prediction process to calculate a predicted driving force change portion according to the predicted idle speed change portion; execute a braking force control process to calculate a change portion of a target vehicle braking force that cancels the predicted driving force change portion and instruct it to a brake device; and, when the brake response delay time is longer than an engine response delay time, execute a rotational speed control delay process to delay a target idle speed change by a rotational speed control delay time being longer than or equal to a difference obtained by subtracting the engine response delay time from the brake response delay time.
    Type: Application
    Filed: February 10, 2021
    Publication date: September 16, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shigehiro SUGIHIRA
  • Patent number: 10876483
    Abstract: A control device for an internal combustion engine is configured, where a designated cam switching condition is met, to execute a boost pressure control processing and an air amount control processing. In the boost pressure control processing, the control device controls a boost pressure control device such that a boost pressure control parameter does not increase in synchronization with execution of a cam switching operation and decreases in accordance with an increase of a required engine torque after the execution of the cam switching operation. In the air amount control processing, the control device controls the opening degree of a throttle valve to its closed side in synchronization with the cam switching operation such that a difference of an in-cylinder charge air amount is not produced before and after the execution of the cam switching operation.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 29, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Noriyasu Adachi, Keisuke Sasaki, Takayoshi Kawai
  • Patent number: 10718276
    Abstract: A failure diagnosis apparatus according to the present disclosure is applied to a variable compression ratio mechanism that can switch the compression ratio of an internal combustion engine between at least a first compression ratio and a second compression ratio lower than the first compression ratio. When the variable compression ratio mechanism is controlled so as to set the compression ratio of the internal combustion engine to the second compression ratio, the failure diagnosis apparatus advances the ignition timing of one cylinder to a knock inducing ignition timing more advanced than the MBT that does not lead to the occurrence of knock if the actual compression ratio of that cylinder is the second compression ratio but leads to the occurrence of knock if the actual compression ratio of that cylinder is the first compression ratio and diagnoses failure of the variable compression ratio mechanism on the basis of whether knock occurs or not.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 21, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHI
    Inventors: Shigehiro Sugihira, Naoto Kato, Ryutaro Moriguchi, Yushi Shibaike
  • Patent number: 10544713
    Abstract: A control device is configured, if, although the control device has caused a cam switching device to perform a first cam switching operation for switching the profiles of all the valve-driving cams of a plurality of cylinders from a first profile to a second profile, the profiles of all the valve-driving cams of the plurality of cylinders do not coincide with the second profile, to cause the cam switching device to perform a second cam switching operation for switching the profile of the valve-driving cam for at least one or more normal cylinders that are one or more cylinders at which the switching of profiles to the second profile has succeeded.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: January 28, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinji Sadakane, Hiroyuki Sugihara, Noriyasu Adachi, Keisuke Sasaki, Shigehiro Sugihira, Takayoshi Kawai, Kaoru Ohtsuka
  • Patent number: 10513950
    Abstract: Provided is a control device for an internal combustion engine equipped with a cam switching device including a cam groove provided on the outer peripheral surface of a camshaft and an electromagnetic solenoid type actuator capable of protruding, toward the camshaft, an engagement pin that is engageable with the cam groove. The control device is configured, in causing the cam switching device to perform a cam switching operation, to perform energization of the actuator such that the engagement pin is seated on a forward outer peripheral surface, and to more lower, when an electric current (coil current) flowing through the actuator as a result of the energization is greater, an average electric voltage per unit time applied to the actuator in protruding the engagement pin toward the cam groove from the forward outer peripheral surface.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: December 24, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyasu Adachi, Keisuke Sasaki, Shigehiro Sugihira, Takayoshi Kawai, Shinji Sadakane, Hiroyuki Sugihara, Kaoru Ohtsuka
  • Patent number: 10502154
    Abstract: An electronic control unit of a control device for an internal combustion engine executes, for a first cycle, first drive processing for controlling an actuator such that a pin drive operation is executed for switching from a first cam to a second cam, executes second drive processing for controlling the actuator such that the pin drive operation is executed again for a second cycle, and executes abnormality determination processing for determining that a cam switching mechanism has an abnormality in a case where a pin returns to a reference position by using a pin return section following a cam switching section of the first cycle after the execution of the first drive processing and the pin returns to the reference position by using the pin return section following the cam switching section of the second cycle after the execution of the second drive processing.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: December 10, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Sasaki, Noriyasu Adachi, Shigehiro Sugihira, Takayoshi Kawai, Shinji Sadakane, Kaoru Otsuka
  • Patent number: 10465573
    Abstract: In a system that selects a large-cam as a driving cam at a time of a start of an engine, when an engine stop request is output, it is determined whether there is a small-cam cylinder for which a small-cam is selected as the driving cam. In a case where it is determined that there is a small-cam cylinder, a switching command for switching the driving cam from the small-cam to the large-cam is output. When an engine start request is output, the above determination is performed again. In a case where it is determined that there is a small-cam cylinder, the switching command is output to all solenoid actuators again. In addition, the drive of the fuel injector is suspended until the switching operation of the driving cam is completed for all cylinders.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 5, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Noriyasu Adachi, Keisuke Sasaki, Takayoshi Kawai, Kaoru Otsuka, Shinji Sadakane, Hiroyuki Sugihara
  • Publication number: 20190226412
    Abstract: A control device for an internal combustion engine is configured, where a designated cam switching condition is met, to execute a boost pressure control processing and an air amount control processing. In the boost pressure control processing, the control device controls a boost pressure control device such that a boost pressure control parameter does not increase in synchronization with execution of a cam switching operation and decreases in accordance with an increase of a required engine torque after the execution of the cam switching operation. In the air amount control processing, the control device controls the opening degree of a throttle valve to its closed side in synchronization with the cam switching operation such that a difference of an in-cylinder charge air amount is not produced before and after the execution of the cam switching operation.
    Type: Application
    Filed: November 26, 2018
    Publication date: July 25, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Noriyasu Adachi, Keisuke Sasaki, Takayoshi Kawai
  • Patent number: 10344638
    Abstract: An internal combustion engine system is provided with a cam switching device including a cam groove provided on the outer peripheral surface or a camshaft and an actuator capable of protruding, toward the camshaft, an engagement pin that is engageable with the cam groove. The internal combustion engine system is configured, in causing the cam switching device to perform a cam switching operation, to control the actuator such that the engagement pin is seated on a forward outer peripheral surface which is located more forward than an end of the cam groove on the forward side with respect to an insert section of the cam groove in the rotational direction of the camshaft.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 9, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke Sasaki, Noriyasu Adachi, Shigehiro Sugihira, Takayoshi Kawai, Shinji Sadakane, Hiroyuki Sugihara, Kaoru Ohtsuka
  • Patent number: 10329962
    Abstract: At crank angle CA10 at which the switch request of the drive cam was issued, the ejection operations of the pins at all the solenoid actuators started simultaneously. The ejected pins are seated on the cam carriers at crank angle CA12. The pin seated on the cam carrier moves along the grooves in accordance with the rotation of the cam carrier. The earliest finish timing of the switch operation of the drive cam is at crank angle CA13 (#4 cylinder). At the crank angle CA13, drive of the fuel injector and the ignition device in each cylinder is permitted.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: June 25, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayoshi Kawai, Noriyasu Adachi, Shigehiro Sugihira, Keisuke Sasaki, Kaoru Otsuka, Shinji Sadakane, Hiroyuki Sugihara
  • Patent number: 10273898
    Abstract: A controller for an internal combustion engine includes an electronic control unit. The electronic control unit is configured to increase an air amount that is suctioned into a cylinder while maintaining the lean air-fuel ratio as a first torque increasing operation in a case where target torque is increased during the operation at the lean air-fuel ratio such that torque is increased. The electronic control unit is configured to compute limit torque as an upper limit of the torque that can be realized in a case where the lean air-fuel ratio is kept for a certain time from a current time point. The electronic control unit is configured to switch to the operation at the theoretical air-fuel ratio and increase the torque as a second torque increasing operation in a case where the target torque becomes higher than the limit torque during execution of the first torque increasing operation.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 30, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Naoto Kato, Satoshi Yoshizaki
  • Patent number: 10190519
    Abstract: The invention relates to a control device for an internal combustion engine that includes a turbocharger, and an actuator that changes a turbocharging pressure by regulating exhaust energy for use in drive of the turbocharger. When a target torque is increased during execution of a lean burn operation, the control device switches an operation mode of the internal combustion engine from the lean burn operation to a stoichiometric operation. When the operation mode switching is performed in a turbocharging state, the control device determines whether a target torque is within a range of a torque realizable under the lean air-fuel ratio. When the target torque is within the range, the control device operates the actuator so as to keep the turbocharging pressure at a magnitude equal to or larger than a magnitude at a time point at which the operation mode is switched.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: January 29, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro Sugihira, Naoto Kato, Satoshi Yoshizaki
  • Publication number: 20190010887
    Abstract: An electronic control unit of a control device for an internal combustion engine executes, for a first cycle, first drive processing for controlling an actuator such that a pin drive operation is executed for switching from a first cam to a second cam, executes second drive processing for controlling the actuator such that the pin drive operation is executed again for a second cycle, and executes abnormality determination processing for determining that a cam switching mechanism has an abnormality in a case where a pin returns to a reference position by using a pin return section following a cam switching section of the first cycle after the execution of the first drive processing and the pin returns to the reference position by using the pin return section following the cam switching section of the second cycle after the execution of-the second drive processing.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke SASAKI, Noriyasu ADACHI, Shigehiro SUGIHIRA, Takayoshi KAWAI, Shinji SADAKANE, Kaoru OTSUKA
  • Publication number: 20180306069
    Abstract: Provided is a control device for an internal combustion engine equipped with a cam switching device including a cam groove provided on the outer peripheral surface of a camshaft and an electromagnetic solenoid type actuator capable of protruding, toward the camshaft, an engagement pin that is engageable with the cam groove. The control device is configured, in causing the cam switching device to perform a cam switching operation, to perform energization of the actuator such that the engagement pin is seated on a forward outer peripheral surface, and to more lower, when an electric current (coil current) flowing through the actuator as a result of the energization is greater, an average electric voltage per unit time applied to the actuator in protruding the engagement pin toward the cam groove from the forward outer peripheral surface.
    Type: Application
    Filed: March 7, 2018
    Publication date: October 25, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyasu ADACHI, Keisuke SASAKI, Shigehiro SUGIHIRA, Takayoshi KAWAI, Shinji SADAKANE, Hiroyuki SUGIHARA, Kaoru OHTSUKA
  • Publication number: 20180283225
    Abstract: A control device is configured, if, although the control device has caused a cam switching device to perform a first cam switching operation for switching the profiles of all the valve-driving cams of a plurality of cylinders from a first profile to a second profile, the profiles of all the valve-driving cams of the plurality of cylinders do not coincide with the second profile, to cause the cam switching device to perform a second cam switching operation for switching the profile of the valve-driving cam for at least one or more normal cylinders that are one or more cylinders at which the switching of profiles to the second profile has succeeded.
    Type: Application
    Filed: March 26, 2018
    Publication date: October 4, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinji SADAKANE, Hiroyuki Sugihara, Noriyasu Adachi, Keisuke Sasaki, Shigehiro Sugihira, Takayoshi Kawai, Kaoru Ohtsuka
  • Publication number: 20180274393
    Abstract: At crank angle CA10 at which the switch request of the drive cam was issued, the ejection operations of the pins at all the solenoid actuators started simultaneously. The ejected pins are seated on the cam carriers at erank angle CA12. The pin seated on the cam carrier moves along the grooves in accordance with the rotation of the cam carrier. The earliest finish timing of the switch operation of the drive cam is at crank angle CA13 (#4 cylinder). At the crank angle CA13, drive of the fuel injector and the ignition device in each cylinder is permitted.
    Type: Application
    Filed: January 23, 2018
    Publication date: September 27, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayoshi KAWAI, Noriyasu ADACHI, Shigehiro SUGIHIRA, Keisuke SASAKI, Kaoru OTSUKA, Shinji SADAKANE, Hiroyuki SUGIHARA
  • Publication number: 20180252125
    Abstract: An internal combustion engine system is provided with a cam switching device including a cam groove provided on the outer peripheral surface or a camshaft and an actuator capable of protruding, toward the camshaft, an engagement pin that is engageable with the cam groove. The internal combustion engine system is configured, in causing the cam switching device to perform a cam switching operation, to control the actuator such that the engagement pin is seated on a forward outer peripheral surface which is located more forward than an end of the cam groove on the forward side with respect to an insert section of the cam groove in the rotational direction of the camshaft.
    Type: Application
    Filed: January 8, 2018
    Publication date: September 6, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke SASAKI, Noriyasu ADACHI, Shigehiro SUGIHIRA, Takayoshi KAWAI, Shinji SADAKANE, Hiroyuki SUGIHARA, Kaoru OHTSUKA
  • Publication number: 20180230869
    Abstract: In a system that selects a large-cam as a driving cam at a time of a start of an engine, when an engine stop request is output, it is determined whether there is a small-cam cylinder for which a small-cam is selected as the driving cam. In a case where it is determined that there is a small-cam cylinder, a switching command for switching the driving cam from the small-cam to the large-cam is output. When an engine start request is output, the above determination is performed again. In a case where it is determined that there is a small-cam cylinder, the switching command is output to all solenoid actuators again. In addition, the drive of the fuel injector is suspended until the switching operation of the driving cam is completed for all cylinders.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 16, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigehiro SUGIHIRA, Noriyasu ADACHI, Keisuke SASAKI, Takayoshi KAWAI, Kaoru OTSUKA, Shinji SADAKANE, Hiroyuki SUGIHARA
  • Patent number: 10030596
    Abstract: In starting the engine, if it is determined that large cams are not completely prepared for all driving cams, valve closing timings of all intake valves are changed by driving the VVT so that all of the cylinders have equal in-cylinder filling efficiency. A fuel injection amount of each cylinder is determined by a feedforward control assuming that the large cams are completely prepared for all of the driving cams. When the valve closing timing of all of the intake valves are changed by driving the VVT to equalize the in-cylinder filling efficiencies of all of the cylinders, all of the cylinders have substantially equal in-cylinder air-fuel ratios.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: July 24, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Sugihara, Kaoru Otsuka, Shinji Sadakane, Noriyasu Adachi, Shigehiro Sugihira, Keisuke Sasaki, Takayoshi Kawai