Patents by Inventor Shigehito Asano

Shigehito Asano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456447
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 27, 2022
    Assignees: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro Doi, Yuki Kusachi, Noboru Yamauchi, Tomohiro Kaburagi, Hideaki Horie, Yusuke Nakashima, Kazuya Tsuchida, Naofumi Shoji, Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Nobuo Ando, Terukazu Kokubo
  • Publication number: 20210175546
    Abstract: A non-aqueous electrolyte secondary battery has a power generating element that includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is formed on a surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer including a negative electrode active material is formed on a surface of a negative electrode current collector, and a separator impregnated with an electrolyte solution. The negative electrode active material includes a Si material that contains silicon and is capable of insertion and removal of lithium ions. The electrolyte solution contains lithium bis(fluorosulfonyl)imide (LiFSI) and an inorganic lithium salt other than the LiFSI, and has a feature that a ratio of a concentration (mol/L) of the LiFSI with respect to a concentration (mol/L) of the inorganic lithium salt (LiFSI/inorganic lithium salt) in the electrolyte solution is 1 or less.
    Type: Application
    Filed: April 9, 2019
    Publication date: June 10, 2021
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Shotaro DOI, Noboru YAMAUCHI, Yuki KUSACHI, Hajime SATOU, Hideaki HORIE, Yusuke NAKASHIMA, Naofumi SHOJI, Kazuya TSUCHIDA, Koji SUMIYA, Takumi HATAZOE, Shigehito ASANO, Nobuo ANDO
  • Publication number: 20210111389
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions using an electrolyte solution that includes lithium ions. The electrolyte solution includes at least one type of additive having a reduction potential higher than a reduction potential of a solvent contained in the electrolyte solution.
    Type: Application
    Filed: February 21, 2019
    Publication date: April 15, 2021
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20200395594
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Application
    Filed: February 21, 2019
    Publication date: December 17, 2020
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20200219669
    Abstract: There is provided a means capable of suppressing generation of a lithium dendrite at the time of charging and discharging while sufficiently suppressing an amount of gas generated at the time of initial charging of an electric device. When a lithium ion is doped in advance to a negative electrode active material, which is used in an electric device including a positive electrode and a negative electrode, after performing a pre-doping step of doping the lithium ion to a negative electrode active material to be doped to reduce a potential (vs. Li+/Li) of the negative electrode active material to be doped with respect to a lithium metal, a dedoping step of dedoping the lithium ion from the negative electrode active material doped with the lithium ion in the pre-doping step to increase a potential (vs. Li+/Li) of the negative electrode active material with respect to the lithium metal is performed.
    Type: Application
    Filed: July 18, 2018
    Publication date: July 9, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shotaro DOI, Yuki KUSACHI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Patent number: 10580592
    Abstract: Provided is a method for manufacturing an electrode material having a pressing step in which an irregularly shaped aggregate containing at least an active material is statically pressed in the presence of an alkali metal source and a solvent.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 3, 2020
    Assignee: JSR Corporation
    Inventors: Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Ryo Kimura, Tsutomu Reiba, Terukazu Kokubo, Nobuo Ando
  • Publication number: 20190198854
    Abstract: A manufacturing method for an electrode material, the manufacturing method including, in a presence of an alkali metal supplying source and a solvent, dynamically pressurizing an amorphous aggregate including at least an active material in a dynamic pressurizer, sending out in a sending direction, and continuously discharging the aggregate in the sending direction from the dynamic pressurizer.
    Type: Application
    Filed: April 27, 2017
    Publication date: June 27, 2019
    Applicant: JSR Corporation
    Inventors: Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Ryo KIMURA, Tsutomu REIBA, Terukazu KOKUBO, Nobuo ANDO, Takumi HATAZOE
  • Publication number: 20180301291
    Abstract: Provided is a method for manufacturing an electrode material having a pressing step in which an irregularly shaped aggregate containing at least an active material is statically pressed in the presence of an alkali metal source and a solvent.
    Type: Application
    Filed: September 28, 2016
    Publication date: October 18, 2018
    Applicant: JSR Corporation
    Inventors: Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Ryo KIMURA, Tsutomu REIBA, Terukazu KOKUBO, Nobuo ANDO
  • Patent number: 8247481
    Abstract: A photosensitive insulating resin composition includes a block copolymer, a crosslinking agent, a photosensitive compound, and a solvent. The block copolymer includes a first structural unit shown by a following formula (1) and a second structural unit shown by a following formula (2), wherein R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R2 represents an alkyl group having 1 to 4 carbon atoms.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 21, 2012
    Assignee: JSR Corporation
    Inventors: Atsushi Ito, Shigehito Asano, Hirofumi Goto, Takayoshi Tanabe
  • Publication number: 20110172349
    Abstract: A photosensitive insulating resin composition includes a block copolymer, a crosslinking agent, a photosensitive compound, and a solvent. The block copolymer includes a first structural unit shown by a following formula (1) and a second structural unit shown by a following formula (2), wherein R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R2 represents an alkyl group having 1 to 4 carbon atoms.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 14, 2011
    Applicant: JSR Corporation
    Inventors: Atsushi ITO, Shigehito Asano, Hirofumi Goto, Takayoshi Tanabe
  • Publication number: 20090221777
    Abstract: Disclosed is a photosensitive resin composition comprising (A) a polyimide resin, (B) a photo-acid generator, and (C) a crosslinking agent having an alkoxyalkylated amino group.
    Type: Application
    Filed: April 19, 2007
    Publication date: September 3, 2009
    Applicant: JSR CORPORATION
    Inventors: Takashi Chiba, Akio Saito, Shigehito Asano