Patents by Inventor Shigeo Hatamiya

Shigeo Hatamiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10458347
    Abstract: To provide a novel power train system capable of improving fuel efficiency, reducing harmful components of an exhaust gas, and improving an output by adjusting a composition of a gas component of the exhaust gas in accordance with an operation condition. Therefore, provided is a power train system including a gas component separation unit (2) which extracts a plurality of gas components having different specific heat ratios from an exhaust gas of a spark ignition type internal combustion engine (1), a recirculation unit which recirculates the plurality of gas components to a combustion chamber of the internal combustion engine, and a ratio adjustment unit (3) which adjusts a ratio of the plurality of gas components recirculated to the combustion chamber in response to an operation state of the internal combustion engine. A composition of a gas recirculated to the internal combustion engine can be adjusted depending on various operation conditions.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: October 29, 2019
    Assignee: HITACHI, LTD.
    Inventors: Yoshihiro Sukegawa, Masato Kaneeda, Shigeo Hatamiya
  • Publication number: 20180209361
    Abstract: To provide a novel power train system capable of improving fuel efficiency, reducing harmful components of an exhaust gas, and improving an output by adjusting a composition of a gas component of the exhaust gas in accordance with an operation condition. Therefore, provided is a power train system including a gas component separation unit (2) which extracts a plurality of gas components having different specific heat ratios from an exhaust gas of a spark ignition type internal combustion engine (1), a recirculation unit which recirculates the plurality of gas components to a combustion chamber of the internal combustion engine, and a ratio adjustment unit (3) which adjusts a ratio of the plurality of gas components recirculated to the combustion chamber in response to an operation state of the internal combustion engine. A composition of a gas recirculated to the internal combustion engine can be adjusted depending on various operation conditions.
    Type: Application
    Filed: July 27, 2015
    Publication date: July 26, 2018
    Applicant: Hitachi, Ltd.
    Inventors: Yoshihiro SUKEGAWA, Masato KANEEDA, Shigeo HATAMIYA
  • Patent number: 8978386
    Abstract: Provided is a gas turbine system capable of dealing with a request for output increase even when high-pressure hot water generated using solar thermal energy cannot be used according to the operating state of the gas turbine system. A gas turbine system which sucks in intake air from an air intake duct by a compressor and drives a gas turbine by combustion gas obtained by burning air and fuel by a combustor, said gas turbine system being provided with pipes for generating high-pressure hot water by providing a solar collecting tube that utilizes solar heat and spraying the high-pressure hot water into the intake air sucked in by the compressor, and pipes for spraying normal temperature water into the intake air sucked in by the compressor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Takaaki Sekiai, Kazuhito Koyama, Shigeo Hatamiya, Fumio Takahashi, Naoyuki Nagafuchi, Kazuo Takahashi
  • Publication number: 20150053596
    Abstract: There is provided a desalination system capable of monitoring a situation of a semipermeable membrane element in real time.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 26, 2015
    Inventors: Kouji KAGEYAMA, Yoshinobu MIYAKE, Yukinori KATAGIRI, Yukiko ICHIGE, Shigeo HATAMIYA
  • Publication number: 20150033760
    Abstract: It is an object of the present invention to provide a solar assisted gas turbine system that has a largely reduced number of heat collectors and a reduced installation area required for installation of the heat collectors. The solar assisted gas turbine system of the invention includes a gas turbine unit having a compressor for compressing air, a combustor for putting the air compressed by the compressor and a fuel into combustion, and a turbine driven by a combustion gas generated in the combustor; a heat collector for collecting solar heat and forming high-pressure hot water; a heat storage tank for storing the heating medium raised in temperature; a heat-exchanger for performing heat exchange between the heating medium and water to form hot water; and an atomizer by which the hot water formed by the heat-exchanger is sprayed into the air to be taken into the compressor.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 5, 2015
    Applicant: Mitsubishi Httachi Power Systems, Ltd.
    Inventors: Kazuhito Koyama, Naohiro Kusumi, Shigeo Hatamiya, Fumio Takahashi, Takaaki Sekiai
  • Patent number: 8826671
    Abstract: A controller for use in a gas turbine power plant includes a compressor that compresses combustion air; a water-atomization cooling apparatus that sprays water drops of atomized water supplied via a water-atomization flow-rate regulating valve over a flow of air drawn in the compressor; a combustor that mixes the compressed combustion air with fuel to thereby burn a fuel-air mixture and generate combustion gas at high temperature and performs combustion switching during operation; a turbine that uses the combustion gas to drive the compressor and a generator; the water-atomization flow-rate regulating valve that controls a flow rate of the atomized water; and a compressor inlet inner blade that controls a flow rate of air drawn in the compressor. The controller includes control means that calculates a fuel-air ratio correction command signal for compensating for reduction in a fuel-air ratio in the combustor occurring during the combustion switching.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 9, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Eunkyeong Kim, Kazuhito Koyama, Shigeo Hatamiya, Yukinori Katagiri, Takuya Yoshida, Naohiro Kusumi, Kazuo Takahashi
  • Patent number: 8695347
    Abstract: A boiling water nuclear power plant supplies steam from a reactor to high-pressure and low-pressure turbines. Feed water generated by condensing steam in a condenser is heated by low-pressure and high-pressure feed water heaters and supplied to the reactor. The steam discharged from the low-pressure turbine is compressed by a steam compressor and supplied to one of the low-pressure feed water heaters to heat feed water. The steam extracted from the low-pressure turbine is supplied to the low-pressure feed water heater. When power required for the steam compressor is Q1, heat energy supplied from the steam compressor is Q3, a coefficient of performance of the steam compressor is COP (=Q3/Q1), and a thermal efficiency of the boiling water nuclear power plant is ?, the steam compression apparatus is connected to a position in a main steam system and to the feed water heater so as to satisfy COP?1/?>0.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 15, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Koji Namba, Fumio Takahashi, Koji Nishida, Susumu Nakano, Takanori Shibata
  • Publication number: 20140060046
    Abstract: A thermal storage system 1 includes: heat transfer medium that absorbs the solar thermal energy; phase-change material 10a6 that is heat exchanged with the heat transfer medium; and first thermal storage tanks (stratified tanks 10a-10c) in which the phase-change material 10a6 is supported and through which the heat transfer medium flows, wherein a plurality of the first thermal storage tanks (stratified tanks 10a-10c) are present, and the first thermal storage tanks (stratified tanks 10a-10c) are connected in parallel for the heat transfer medium flowing through, when storing the solar thermal energy, while the first thermal storage tanks (stratified tanks 10a-10c) are connected in series for the heat transfer medium flowing through, when exploiting the stored solar thermal energy. The thermal storage system is capable of exploiting the solar thermal energy more efficiently than conventional ones, while considering a variation in the amount of solar thermal energy.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: Hitachi, Ltd
    Inventors: Fumio Takahashi, Kazuhito Koyama, Shigeo Hatamiya, Naohiro Kusumi, Takaaki Sekiai
  • Publication number: 20140034752
    Abstract: In an atomizer constructed to cool inlet air for a gas turbine by spraying fine droplets of water into the inlet air, a spray nozzle is disposed to spray the finely atomized droplets of water from an outer edge of an atomized airstream into a high-speed zone thereof, towards a central region of the airstream. The atomized airstream meets an airstream of a low-speed zone formed at a downstream side, and after the two kinds of airstreams have been mixed and unified, this mixture is supplied to an axisymmetric compressor. Devices such as a feed water pipe and spray nozzle are placed in the low-speed zone so as not to obstruct the airstream.
    Type: Application
    Filed: July 29, 2013
    Publication date: February 6, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Fumio TAKAHASHI, Kazuhito KOYAMA, Shigeo HATAMIYA, Naohiro KUSUMI, Chihiro MYOREN, Go AGATA, Takaaki SEKIAI
  • Publication number: 20140033720
    Abstract: A controller for use in a gas turbine power plant includes a compressor that compresses combustion air; a water-atomization cooling apparatus that sprays water drops of atomized water supplied via a water-atomization flow-rate regulating valve over a flow of air drawn in the compressor; a combustor that mixes the compressed combustion air with fuel to thereby burn a fuel-air mixture and generate combustion gas at high temperature and performs combustion switching during operation; a turbine that uses the combustion gas to drive the compressor and a generator; the water-atomization flow-rate regulating valve that controls a flow rate of the atomized water; and a compressor inlet inner blade that controls a flow rate of air drawn in the compressor. The controller includes control means that calculates a fuel-air ratio correction command signal for compensating for reduction in a fuel-air ratio in the combustor occurring during the combustion switching.
    Type: Application
    Filed: February 4, 2011
    Publication date: February 6, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Eunkyeong Kim, Kazuhito Koyama, Shigeo Hatamiya, Yukinori Katagiri, Takuya Yoshida, Naohiro Kusumi, Kazuo Takahashi
  • Publication number: 20140013757
    Abstract: An object of the present invention is to provide a solar thermal gas turbine system enhanced in resistance to effects of disturbances including weather conditions in a gas turbine which sprays water into intake air of a compressor.
    Type: Application
    Filed: March 7, 2011
    Publication date: January 16, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Toru Eguchi, Kazuhito Koyama, Shigeo Hatamiya, Fumio Takahashi, Naoyuki Nagafuchi, Yukinori Katagiri
  • Publication number: 20130174549
    Abstract: Provided is a gas turbine system capable of dealing with a request for output increase even when high-pressure hot water generated using solar thermal energy cannot be used according to the operating state of the gas turbine system. A gas turbine system which sucks in intake air from an air intake duct by a compressor and drives a gas turbine by combustion gas obtained by burning air and fuel by a combustor, said gas turbine system being provided with pipes for generating high-pressure hot water by providing a solar collecting tube that utilizes solar heat and spraying the high-pressure hot water into the intake air sucked in by the compressor, and pipes for spraying normal temperature water into the intake air sucked in by the compressor.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 11, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Takaaki Sediai, Kazuhito Koyama, Shigeo Hatamiya, Fumio Takahashi, Naoyuki Nagafuchi, Kazuo Takahashi
  • Publication number: 20130139517
    Abstract: This invention is intended to provide a solar assisted gas turbine system significantly reduced in the number of heat collectors and downsized in heat collector installation site area requirement. The system according to the invention includes a compressor 1 for compressing air, a combustor 3 for burning the compressor-compressed air and a fuel, a gas turbine apparatus 100 including a turbine 2 driven by combustion gases generated in the combustor, and a heat collector 200 for collecting solar heat and creating high-pressure hot water using the solar heat; the system further including an atomizer 300 that atomizes the high-pressure hot water created by the collector 200 and sprays the atomized hot water into a stream of the air taken into the compressor 1.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 6, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Kazuhito Koyama, Shigeo Hatamiya, Fumio Takahashi, Naoyuki Nagafuchi
  • Patent number: 8448439
    Abstract: An electric power plant supplies steam generated to a high-pressure turbine and a low-pressure turbine. The steam discharged from the low-pressure turbine is condensed with a condenser. Water generated with the condenser is heated with a low-pressure feed water heater and a high-pressure feed water heater. The steam extracted from the high-pressure turbine is supplied to the high-pressure feed water heater. The steam extracted from the low-pressure turbine is compressed with a steam compressor, and the steam whose temperature has been increased is then supplied to the high-pressure feed water heater. The feed water is heated in the high-pressure feed water heater by the steam extracted from the high-pressure turbine and the steam compressed with the steam compressor. Because the feed water is heated by the extracted steam and the compressed steam in the high-pressure feed water heater, the amount of power consumed by the steam compressor can be reduced.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Koji Namba, Shigeo Hatamiya, Fumio Takahashi, Koji Nishida, Susumu Nakano, Takanori Shibata
  • Patent number: 8402735
    Abstract: The amount of water to be injected in an intercooler is controlled to cool the compressed gas to the saturation temperature. It is difficult to adjust the amount of the water to be injected, however, since the temperature of the compressed gas at an intercooler outlet is actually higher than the saturation temperature. An intercooling system is configured so as to cool a gas to the saturation temperature without controlling the amount of water injection and thereby maintain the reliability of the compressor while improving the cooling efficiency. The intercooling system is located between a plurality of compression stages of a gas compressor to cool the gas that has been in the compressor. A desired amount of liquid is sprinkled to cool the compressed gas while restraining inflow of the liquid into the compression stages.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hidefumi Araki, Takanori Shibata, Shigeo Hatamiya, Moriaki Tsukamoto
  • Publication number: 20120282080
    Abstract: The amount of water to be injected in an intercooler is controlled to cool the compressed gas to the saturation temperature. It is difficult to adjust the amount of the water to be injected, however, since the temperature of the compressed gas at an intercooler outlet is actually higher than the saturation temperature. An intercooling system is configured so as to cool a gas to the saturation temperature without controlling the amount of water injection and thereby maintain the reliability of the compressor while improving the cooling efficiency. The intercooling system is located between a plurality of compression stages of a gas compressor to cool the gas that has been in the compressor. A desired amount of liquid is sprinkled to cool the compressed gas while restraining inflow of the liquid into the compression stages.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 8, 2012
    Applicant: HITACHI, LTD.
    Inventors: Hidefumi ARAKI, Takanori SHIBATA, Shigeo HATAMIYA, Moriaki TSUKAMOTO
  • Patent number: 8240122
    Abstract: The amount of water to be injected in an intercooler is controlled to cool the compressed gas to the saturation temperature. It is difficult to adjust the amount of the water to be injected, however, since the temperature of the compressed gas at an intercooler outlet is actually higher than the saturation temperature. An intercooling system is configured so as to cool a gas to the saturation temperature without controlling the amount of water injection and thereby maintain the reliability of the compressor while improving the cooling efficiency. The intercooling system is located between a plurality of compression stages of a gas compressor to cool the gas that has been in the compressor. A desired amount of liquid is sprinkled to cool the compressed gas while restraining inflow of the liquid into the compression stages.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: August 14, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hidefumi Araki, Takanori Shibata, Shigeo Hatamiya, Moriaki Tsukamoto
  • Publication number: 20110283704
    Abstract: A boiling water nuclear power plant supplies steam from a reactor to high-pressure and low-pressure turbines. Water (feed water) generated by condensing steam in a condenser is heated by low-pressure and high-pressure feed water heaters and supplied to the reactor. The steam discharged from the low-pressure turbine is compressed by a steam compression apparatus (a heat pump) and supplied to one of the low-pressure feed water heaters to heat feed water. The steam extracted from the low-pressure turbine is also supplied to the low-pressure feed water heater. When power required for the steam compression apparatus is Q1, heat energy supplied from the steam compression apparatus is Q3, a coefficient of performance of the steam compression apparatus is COP )(=Q3/Q1), and a thermal efficiency of the boiling water nuclear power plant is ?, the steam compression apparatus is connected to a position in a main steam system and to the feed water heater so as to satisfy COP?1/?>0.
    Type: Application
    Filed: January 19, 2010
    Publication date: November 24, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Koji Namba, Fumio Takahashi, Koji Nishida, Susumu Nakano, Takanori Shibata
  • Patent number: 7966840
    Abstract: A compact heat pump system and a heat pump operation method, which can avoid the occurrence of surging in a compressor at startup of a heat pump and can directly supply vapor of a working medium produced by the compressor to an external heat-utilizing facility. The heat pump system includes an evaporator for recovering heat of an external heat source to a working medium supplied as liquid water from the exterior via a water feed channel, thereby evaporating the working medium, a compressor for compressing the working medium evaporated in the evaporator and increasing temperature of the evaporated working medium, and a driving unit for giving motive power to drive the compressor.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 28, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Takanori Shibata, Shigeo Hatamiya, Toshihiko Fukushima
  • Patent number: 7908861
    Abstract: A heat energy supply system and method capable of drastically increasing energy efficiency and energy supply efficiency, as well as a reconstruction method of the heat energy supply system. The heat energy supply system comprises a boiler for heating a heat medium and producing steam including water and other vapors, a heat pump including a steam turbine driven by the steam supplied from the boiler and a heat exchanger for heating the heat medium by employing waste heat or heat obtained from environment, thereby producing the steam at a setting temperature, and a steam supply line for supplying the steam discharged from the steam turbine and the steam heated by the heat exchanger to a heat utilization facility.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kooichi Chino, Moriaki Tsukamoto, Toshihiko Fukushima, Shigeo Hatamiya