Patents by Inventor Shigeru Miwa

Shigeru Miwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230315080
    Abstract: Provided is a work machine and a work machine management system that enable more appropriate transmission of information of a high-priority work machine even when there is a large number of work machines. A work machine 10 comprises an information controller 20. The information controller 20 acquires operation information of the work machine 10; receives management server information from a management server 90 provided outside the work machine 10; determines a transmission priority order of the operation information based on content of the operation information and the management server information; and transmits the operation information to the management server 90 or a relay 80 according to the transmission priority order.
    Type: Application
    Filed: October 22, 2021
    Publication date: October 5, 2023
    Inventors: Satoshi IIMURO, Mitsuhiro KITANI, Bandara SYAFRIL, Shigeru MIWA
  • Patent number: 7388199
    Abstract: A probe is made by attaching a carbon nanotube 12 to a mounting base end 13, which eliminates the effects of a carbon contamination film, to increase the bonding strength, increase the conductivity of the probe, and strengthen the bonding performance thereof by coating the entire circumference of the nanotube and the base with a coating film, rather than coating just one side. The work of mounting the carbon nanotube and mounting base end are performed under observation by a microscope. Further, the carbon contamination film 14 formed by an electron microscope is stripped off at a stage before bonding by the coating film.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 17, 2008
    Assignee: Hitachi Kenki Fine Tech Co., Ltd.
    Inventors: Takafumi Morimoto, Tooru Shinaki, Yoshiyuki Nag'No, Yukio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa, Ken Murayama, Mitsuo Hayashibara, Kishio Hidaka, Tadashi Fujieda
  • Patent number: 7350404
    Abstract: The probe tip movement control method of the scanning probe microscope is used for a scanning probe microscope provided with a cantilever 21 having a probe tip 20 facing a sample 12. The atomic force occurring between the probe tip and sample is measured when the probe tip scans the surface of the sample. X-, Y-, and Z-fine movement mechanisms 23, 29, and 30 are used to relatively change the positions of the probe tip and sample. It is possible to maintain a high measurement accuracy and enable scan movement of a probe tip on a sample surface by simple control when measuring a part having a gradient in measurement of an uneven shape on a sample surface.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 1, 2008
    Assignee: Hitachi Kenki Fine Tech Co., Ltd.
    Inventors: Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Yasushi Minomoto, Shigeru Miwa, Ken Murayama, Yukio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Yoshiyuki Nagano, Takafumi Morimoto
  • Patent number: 7333191
    Abstract: A scanning probe microscope has a cantilever with a probe facing a sample and a measurement section for measuring a physical quantity occurring between the probe and the sample when the probe scans a surface of the sample, holding the physical quantity constant to measure the surface of the sample. The above microscope further has a probe tilt mechanism, an optical microscope etc. for detecting a position of the probe when the probe is tilted, and a control section for setting the probe in a first tilt posture and second tilt posture, measuring a surface of the sample by the measurement section at each tilt posture, detecting the position of the probe at least at the second tilt posture by the optical microscope etc., and making a measurement location at the second tilt posture match with a measurement location at the first tilt posture for measurement.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: February 19, 2008
    Assignee: Hitachi Kenki Finetech Co., Ltd.
    Inventors: Ken Murayama, Yukio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Yoshiyuki Nagano, Takafumi Morimoto, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa
  • Publication number: 20070180889
    Abstract: A probe replacement method for a scanning probe microscope for measuring the surface of a sample, having a cantilever (21) having a probe (20), and a measurement unit for measuring a physical quantity between the probe and sample. The scanning probe microscope is provided with a cantilever mount (22), a cantilever cassette (30), an XY stage (14) and Z stage (15) for moving the cantilever cassette, and an optical microscope (18). In a first step, a cantilever is selected from the cantilever cassette and is mounted on the cantilever mount. In a second step, an optical microscope is moved and the mounted cantilever is set in a prescribed position in the field of view after the cantilever is mounted in the scanning probe microscope. In the second step, a step is provided for moving the optical microscope side or the cantilever side and performing positional adjustment.
    Type: Application
    Filed: March 22, 2004
    Publication date: August 9, 2007
    Inventors: Ken Murayama, Yokio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Yoshiyuki Nagano, Takafumi Morimoto, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa, Takashi Furutani
  • Publication number: 20060284083
    Abstract: The probe tip movement control method of the scanning probe microscope is used for a scanning probe microscope provided with a cantilever 21 having a probe tip 20 facing a sample 12. The atomic force occurring between the probe tip and sample is measured when the probe tip scans the surface of the sample. X-, Y-, and Z-fine movement mechanisms 23, 29, and 30 are used to relatively change the positions of the probe tip and sample. It is possible to maintain a high measurement accuracy and enable scan movement of a probe tip on a sample surface by simple control when measuring a part having a gradient in measurement of an uneven shape on a sample surface.
    Type: Application
    Filed: August 27, 2004
    Publication date: December 21, 2006
    Inventors: Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Yasushi Minomoto, Shigeru Miwa, Ken Murayama, Yukio Kenbou, Yuuichi Yuuichi, Takenori Hiroki, Yoshiyuki Nagano, Takafumi Morimoto
  • Publication number: 20060284084
    Abstract: A method of producing a probe by attaching a carbon nanotube etc. to a mounting base end and bonding it there using a carbon film etc., which method of producing a probe eliminates the effects of a carbon contamination film to increase the bonding strength, increases the conductivity of the probe, and strengthens the bonding performance by coating the entire circumference rather than coating one side, the probe, and a scanning probe microscope are provided. The method of producing a probe is a method of producing a probe comprised of a carbon nanotube 12, a mounting base ends 13 holding this carbon nanotube, and a coating film 17 bonding the carbon nanotube to a mounting base, comprising performing the mounting work of the carbon nanotube and mounting base end under observation by a microscope and stripping off the carbon contamination film 14 formed by an electron microscope at a stage before bonding by the coating film.
    Type: Application
    Filed: September 3, 2004
    Publication date: December 21, 2006
    Inventors: Takafumi Morimoto, Tooru Seinaki, Yoshiyuki Nag-No, Yukio Kenbou, Yuuichi Xunitomo, Takenori Hiroki, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa, Ken Murayama, Mitsuo Hayashirara, Kishio Hidaka, Tadashi Fujieda
  • Publication number: 20050012936
    Abstract: A scanning probe microscope has a cantilever with a probe facing a sample and a measurement section for measuring a physical quantity occurring between the probe and the sample when the probe scans a surface of the sample, holding the physical quantity constant to measure the surface of the sample. The above microscope further has a probe tilt mechanism, an optical microscope etc. for detecting a position of the probe when the probe is tilted, and a control section for setting the probe in a first tilt posture and second tilt posture, measuring a surface of the sample by the measurement section at each tilt posture, detecting the position of the probe at least at the second tilt posture by the optical microscope etc., and making a measurement location at the second tilt posture match with a measurement location at the first tilt posture for measurement.
    Type: Application
    Filed: July 19, 2004
    Publication date: January 20, 2005
    Inventors: Ken Murayama, Yukio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Yoshiyuki Nagano, Takafumi Morimoto, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa
  • Patent number: 6397681
    Abstract: This portable ultrasonic detector has a moved distance instrument comprised of an encoder for detecting a moved amount and a counter for counting the moved amount signal outputted from the encoder, as a means for obtaining position information of an ultrasonic probe. When moving the ultrasonic probe on the surface of the object on the occasion of the inspection, the moved distance instrument measures the moved amount of the ultrasonic probe. The measured moved amount of the ultrasonic probe is sent to an arithmetic processing section of the device body. Also, the ultrasonic detector detects A-scope data when scanning the inspected object with the ultrasonic probe, and executes the predetermined processing by using the data. The ultrasonic detector combines the A-scope data and the moved distance data of the ultrasonic probe to make an inner scope image (B-scope image, etc). When repeatedly scanning the same spot of the object with the ultrasonic probe in order to make the B-scope image, etc.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: June 4, 2002
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Hajime Mizunoya, Yoshio Akutsu, Shigenori Aoki, Shigeru Miwa
  • Patent number: 6112593
    Abstract: A non-destructive inspection device has an inspection unit body and a support casing which is used as a set-up type device by combining the inspection unit body and the support casing in ordinary inspection, and is used as a portable type device by separating them for special inspection situations involving narrow places or high places. The support casing can be freely combined to or separated from the inspection unit body. When combining the two components, the non-destructive inspection device can carry out the inspection based on a stable set-up mode in the same way as conventional devices. When separated, the inspection unit body is used as a portable device.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: September 5, 2000
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Shigenori Aoki, Tohru Miyata, Seigo Kikuchi, Shigeru Miwa, Hajime Mizunoya, Takenori Hiroki
  • Patent number: 4522627
    Abstract: Molten pitch is mixed and atomized in an inert gas stream having a temperature less than that of the molten pitch, cooled to the ordinary temperature and separated from the gas stream.Fine powder such as carbon, silica alumina and the like is added to at least one step of the process to improve the fluidity of the thusly obtained fine solid pitch spheres. The pitch spheres are easy to storage, handle and transport as they behave like a fluid.
    Type: Grant
    Filed: December 6, 1982
    Date of Patent: June 11, 1985
    Assignee: Fuji Standard Research Kabushiki Kaisha
    Inventors: Shimpei Gomi, Tomomitsu Takeuchi, Itaru Matsuo, Toshio Tsutsui, Takao Nakagawa, Shigeru Miwa
  • Patent number: 4487686
    Abstract: A heavy hydrocarbon feed stock is, after being heat-treated in a first cracking zone, is introduced into a second thermal cracking zone for obtaining a thermally cracked product and a pitch product. The second cracking zone has a plurality of cracking reactors which are connected in series, through which is successively passed the treated feed stock and to each of which is supplied a gaseous heat transfer medium to maintain the liquid phase therein at a temperature sufficient for effecting the thermal cracking and to strip the resulting distillable, cracked components from the liquid phase. The thermal cracking temperature in one reactor is so controlled as to become higher than that in its adjacent upstream-side reactor. The distillable, cracked components in respective reactors are removed overhead therefrom and separated into a heavy fraction and a light fraction, while the liquid phase in the downstream-end reactor is discharged therefrom for recovery as the pitch product.
    Type: Grant
    Filed: February 24, 1984
    Date of Patent: December 11, 1984
    Assignees: Fuji Oil Company, Ltd., Fuji Standard Research, Chiyoda Chemical Engineering & Construction Co., Ltd.
    Inventors: Shimpei Gomi, Tomio Arai, Tomomitsu Takeuchi, Shigeru Miwa, Toru Takatsuka, Ryuzo Watari