Patents by Inventor Shih-Hsiang Lin

Shih-Hsiang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240194848
    Abstract: The light emitting diode packaging structure includes a flexible substrate, micro light emitting elements disposed on the flexible substrate, a conductive pad, a redistribution layer, and an electrode pad. The micro light emitting elements have a first surface facing to the flexible substrate and a second surface opposite to the first surface. The micro light emitting elements include a red micro light emitting element, a blue micro light emitting element, and a green micro light emitting element. The conductive pad is disposed on the second surface of the micro light emitting elements. The redistribution layer covers the micro light emitting elements and the conductive pad. The redistribution layer includes an insulating layer and a circuit layer embedded in the insulating layer. The circuit layer is electrically connected to the conductive pad. The electrode pad is disposed on the redistribution layer and is electrically connected to the circuit layer.
    Type: Application
    Filed: February 27, 2024
    Publication date: June 13, 2024
    Inventors: Chih-Hao LIN, Jo-Hsiang CHEN, Shih-Lun LAI, Min-Che TSAI, Jian-Chin LIANG
  • Publication number: 20240176093
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Application
    Filed: February 5, 2024
    Publication date: May 30, 2024
    Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
  • Patent number: 11996342
    Abstract: A semiconductor package includes a first heat dissipation plate, a second heat dissipation plate, a plurality of heat generating assemblies, and a plurality of fixture components. The first heat dissipation plate has a first upper surface and a first lower surface. The first heat dissipation plate includes first through holes extended from the first upper surface to the first lower surface. The second heat dissipation plate has a second upper surface and a second lower surface. The second heat dissipation plate includes second through holes extended from the second upper surface to the second lower surface. The heat generating assemblies are disposed between the first heat dissipation plate and the second heat dissipation plate. The fixture components include fix screws and nuts. The fix screws penetrate through the first heat dissipation plate and the second heat dissipation plate along the first through holes and the second through holes.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hsiang Lao, Yuan-Sheng Chiu, Hung-Chi Li, Shih-Chang Ku, Tsung-Shu Lin
  • Patent number: 11996472
    Abstract: A semiconductor device and method of fabricating a semiconductor device involves formation of a trench above a fin (e.g. a fin of a FinFET device) of the semiconductor device and formation of a multi-layer dielectric structure within the trench. The profile of the multi-layer dielectric structure can be controlled depending on the application to reduce shadowing effects and reduce cut failure risk, among other possible benefits. The multi-layer dielectric structure can include two layers, three layers, or any number of layers and can have a stepped profile, a linear profile, or any other type of profile.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ya-Yi Tsai, Chi-Hsiang Chang, Shih-Yao Lin, Tzu-Chung Wang, Shu-Yuan Ku
  • Publication number: 20240162308
    Abstract: The present disclosure provides a semiconductor structure with having a source/drain feature with a central cavity, and a source/drain contact feature formed in central cavity of the source/drain region, wherein the source/drain contact feature is nearly wrapped around by the source/drain region. The source/drain contact feature may extend to a lower most of a plurality semiconductor layers.
    Type: Application
    Filed: February 9, 2023
    Publication date: May 16, 2024
    Inventors: Pin Chun SHEN, Che Chia CHANG, Li-Ying WU, Jen-Hsiang LU, Wen-Chiang HONG, Chun-Wing YEUNG, Ta-Chun LIN, Chun-Sheng LIANG, Shih-Hsun CHANG, Chih-Hao CHANG, Yi-Hsien CHEN
  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Publication number: 20240154642
    Abstract: The present disclosure provides an electronic module including a circuit including a transmitting part and a receiving part physically separated from the transmitting part. The electronic module also includes an element isolated from the circuit and configured to block electrical interference between the transmitting part and the receiving part.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Shih-Wen LU, Chun-Jen CHEN, Po-Hsiang TSENG, Hsin-Han LIN, Ming-Lun YU
  • Patent number: 11961939
    Abstract: A method of manufacturing a light-emitting device, including: providing a substrate structure including a top surface; forming a precursor layer on the top surface; removing a portion of the precursor layer and a portion of the substrate from the top surface to form a base portion and a plurality of protrusions regularly arranged on the base portion; forming a buffer layer on the base portion and the plurality protrusions; and forming a III-V compound cap layer on the buffer layer; wherein one of the plurality of protrusions comprises a first portion and a second portion formed on the first portion; wherein the first portion is integrated with the base portion and has a first material which is the same as that of the base portion; and wherein the buffer layer contacts side surfaces of the plurality of protrusions and a surface of the base portion.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: April 16, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Peng Ren Chen, Yu-Shan Chiu, Wen-Hsiang Lin, Shih-Wei Wang, Chen Ou
  • Patent number: 11961951
    Abstract: A light emitting diode device includes a substrate, a conductive via, first and second conductive pads, a driving chip, a flat layer, a redistribution layer, a light emitting diode, and an encapsulating layer. The substrate has a first surface and a second surface opposite thereto. The conductive via penetrates from the first surface to the second surface. The first and second conductive pads are respectively disposed on the first and second surface and in contact with the conductive via. The driving chip is disposed on the first surface. The flat layer is disposed over the first surface and covers the driving chip and the first conductive pad. The redistribution layer is disposed on the flat layer and electrically connects to the driving chip. The light emitting diode is flip-chip bonded to the redistribution layer. The encapsulating layer covers the redistribution layer and the light emitting diode.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: April 16, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chih-Hao Lin, Jian-Chin Liang, Shih-Lun Lai, Jo-Hsiang Chen
  • Publication number: 20240121373
    Abstract: Disclosed are an image display method and a 3d display system. The method is adapted to the 3d display system including a 3d display device and includes the following steps. A first image and a second image are obtained by splitting an input image according to a 3d image format. Whether the input image is a 3D format image complying with the 3D image format is determined through a stereo matching processing performed on the first image and the second image. An image interweaving process is enabled to be performed on the input image to generate an interweaving image in response to determining that the input image is the 3D format image complying with the 3D image format, and the interweaving image is displayed via the 3D display device.
    Type: Application
    Filed: May 10, 2023
    Publication date: April 11, 2024
    Applicant: Acer Incorporated
    Inventors: Kai-Hsiang Lin, Hung-Chun Chou, Wen-Cheng Hsu, Shih-Hao Lin, Chih-Haw Tan
  • Patent number: 11955338
    Abstract: A method includes providing a substrate having a surface such that a first hard mask layer is formed over the surface and a second hard mask layer is formed over the first hard mask layer, forming a first pattern in the second hard mask layer, where the first pattern includes a first mandrel oriented lengthwise in a first direction and a second mandrel oriented lengthwise in a second direction different from the first direction, and where the first mandrel has a top surface, a first sidewall, and a second sidewall opposite to the first sidewall, and depositing a material towards the first mandrel and the second mandrel such that a layer of the material is formed on the top surface and the first sidewall but not the second sidewall of the first mandrel.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chun Huang, Ya-Wen Yeh, Chien-Wen Lai, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Ru-Gun Liu, Chin-Hsiang Lin, Yu-Tien Shen
  • Patent number: 11949016
    Abstract: A method of fabricating a device includes providing a fin element in a device region and forming a dummy gate over the fin element. In some embodiments, the method further includes forming a source/drain feature within a source/drain region adjacent to the dummy gate. In some cases, the source/drain feature includes a bottom region and a top region contacting the bottom region at an interface interposing the top and bottom regions. In some embodiments, the method further includes performing a plurality of dopant implants into the source/drain feature. In some examples, the plurality of dopant implants includes implantation of a first dopant within the bottom region and implantation of a second dopant within the top region. In some embodiments, the first dopant has a first graded doping profile within the bottom region, and the second dopant has a second graded doping profile within the top region.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Hao Lin, Chih-Chuan Yang, Chih-Hsuan Chen, Bwo-Ning Chen, Cha-Hon Chou, Hsin-Wen Su, Chih-Hsiang Huang
  • Patent number: 11949056
    Abstract: The light emitting diode packaging structure includes a flexible substrate, a first adhesive layer, micro light emitting elements, a conductive pad, a redistribution layer, and an electrode pad. The first adhesive layer is disposed on the flexible substrate. The micro light emitting elements are disposed on the first adhesive layer and have a first surface facing to the first adhesive layer and an opposing second surface. The micro light emitting elements include a red micro light emitting element, a blue micro light emitting element, and a green micro light emitting element. The conductive pad is disposed on the second surface of the micro light emitting element. The redistribution layer covers the micro light emitting elements and the conductive pad. The electrode pad is disposed on the redistribution layer and is electrically connected to the circuit layer. A thickness of the flexible substrate is less than 100 um.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: April 2, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chih-Hao Lin, Jo-Hsiang Chen, Shih-Lun Lai, Min-Che Tsai, Jian-Chin Liang
  • Patent number: 11948497
    Abstract: A display device includes a plurality of sub-pixels. The sub-pixels include a first sub-pixel and a second sub-pixel. The first sub-pixel includes a first light emitting element and a first control circuit. The first control circuit is configured to provide a first driving current to the first light emitting element. The second sub-pixel includes a second light emitting element and a second control circuit. The second control circuit is configured to provide a second driving current to the second light emitting element. The first control circuit and the second control circuit are configured to differently control pulse amplitude of the first driving current and pulse amplitude of the second driving current, such that both of the first light emitting element and the second light emitting element emit at a target wavelength or a color point range (e.g. +/?1.5˜2 nm).
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 2, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chih-Hao Lin, Chien-Nan Yeh, Jo-Hsiang Chen, Shih-Lun Lai
  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Patent number: 11935981
    Abstract: A photo-detecting device includes a first semiconductor layer with a first dopant, a light-absorbing layer, a second semiconductor layer, and a semiconductor contact layer. The second semiconductor layer is located on the first semiconductor layer and has a first region and a second region, the light absorbing layer is located between the first semiconductor layer and the second semiconductor layer and has a third region and a fourth region, the semiconductor contact layer contacts the first region. The first region includes a second dopant and a third dopant, the second region includes second dopant, and the third region includes third dopant. The semiconductor contact layer has a first thickness greater than 50 ? and smaller than 1000 ?.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 19, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chu-Jih Su, Chia-Hsiang Chou, Wei-Chih Peng, Wen-Luh Liao, Chao-Shun Huang, Hsuan-Le Lin, Shih-Chang Lee, Mei Chun Liu, Chen Ou
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11790501
    Abstract: A training method for video stabilization and an image processing device using the same are proposed. The method includes the following steps. An input video including low dynamic range (LDR) images is received. The LDR images are converted to high dynamic range (HDR) images by using a first neural network. A feature extraction process is performed to obtain features based on the LDR images and the HDR images. A second neural network for video stabilization is trained according to the LDR images and the HDR images based on a loss function by minimizing a loss value of the loss function to generate stabilized HDR images in a time-dependent manner, where the loss value of the loss function depends upon the features. An HDR classifier is constructed according to the LDR images and the HDR images. The stabilized HDR images are classified by using the HDR classifier to generate a reward value, where the loss value of the loss function further depends upon the reward value.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: October 17, 2023
    Assignee: Novatek Microelectronics Corp.
    Inventors: Jen-Huan Hu, Wei-Ting Chen, Yu-Che Hsiao, Shih-Hsiang Lin, Po-Chin Hu, Yu-Tsung Hu, Pei-Yin Chen
  • Publication number: 20220215207
    Abstract: A training method for video stabilization and an image processing device using the same are proposed. The method includes the following steps. An input video including low dynamic range (LDR) images is received. The LDR images are converted to high dynamic range (HDR) images by using a first neural network. A feature extraction process is performed to obtain features based on the LDR images and the HDR images. A second neural network for video stabilization is trained according to the LDR images and the HDR images based on a loss function by minimizing a loss value of the loss function to generate stabilized HDR images in a time-dependent manner, where the loss value of the loss function depends upon the features. An HDR classifier is constructed according to the LDR images and the HDR images. The stabilized HDR images are classified by using the HDR classifier to generate a reward value, where the loss value of the loss function further depends upon the reward value.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Novatek Microelectronics Corp.
    Inventors: Jen-Huan Hu, Wei-Ting Chen, Yu-Che Hsiao, Shih-Hsiang Lin, Po-Chin Hu, Yu-Tsung Hu, Pei-Yin Chen
  • Patent number: 11373060
    Abstract: A training method for video stabilization and an image processing device using the same are proposed. The method includes the following steps. An input video including low dynamic range (LDR) images is received. The LDR images are converted to high dynamic range (HDR) images by using a first neural network. A second neural network for video stabilization is trained to generate stabilized HDR images in a time-dependent manner.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: June 28, 2022
    Assignee: Novatek Microelectronics Corp.
    Inventors: Jen-Huan Hu, Wei-Ting Chen, Yu-Che Hsiao, Shih-Hsiang Lin, Po-Chin Hu, Yu-Tsung Hu, Pei-Yin Chen