Patents by Inventor Shih-Hung Tsai

Shih-Hung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11646367
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed on the shallow recess.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 9, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Publication number: 20230099443
    Abstract: The invention provides a semiconductor structure, which comprises a substrate with at least a first transistor and a second transistor, and a capacitor structure in a dielectric layer above the substrate, wherein the capacitor structure is electrically connected with a gate of the first transistor and a drain of the second transistor.
    Type: Application
    Filed: October 20, 2021
    Publication date: March 30, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hon-Huei Liu, Shih-Hung Tsai, Chun-Hsien Lin
  • Publication number: 20230066509
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal-oxide semiconductor (MOS) transistor on a substrate, forming an interlayer dielectric (ILD) layer on the MOS transistor, forming a ferroelectric field effect transistor (FeFET) on the ILD layer, and forming a ferroelectric random access memory (FeRAM) on the ILD layer. The formation of the FeFET further includes first forming a semiconductor layer on the ILD layer, forming a gate structure on the semiconductor layer, and then forming a source/drain region adjacent to the gate structure.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 2, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Hung Tsai, Hon-Huei Liu, Chun-Hsien Lin
  • Publication number: 20230009982
    Abstract: A method for fabricating a surface acoustic wave (SAW) device includes the steps of forming a buffer layer on a substrate, forming a high velocity layer on the buffer layer, forming a medium velocity layer on the high velocity layer, forming a low velocity layer on the medium velocity layer, forming a piezoelectric layer on the low velocity layer, and forming an electrode on the piezoelectric layer. Preferably, the buffer layer includes silicon oxide, the high velocity layer includes graphene, the medium velocity layer includes silicon oxynitride, and the low velocity layer includes titanium oxide.
    Type: Application
    Filed: August 4, 2021
    Publication date: January 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hon-Huei Liu, Shih-Hung Tsai, Chun-Hsien Lin
  • Publication number: 20230009805
    Abstract: A method for fabricating a surface acoustic wave (SAW) device includes the steps of forming a first dielectric layer on a substrate, forming a piezoelectric layer on the first dielectric layer, forming a second dielectric layer on the piezoelectric layer, performing a photo-etching process to remove the second dielectric layer for forming a recess in the second dielectric layer, forming a metal layer in the recess, and then performing a planarizing process to remove the metal layer for forming an electrode in the recess.
    Type: Application
    Filed: August 3, 2021
    Publication date: January 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Hung Tsai, Hon-Huei Liu, Chun-Hsien Lin
  • Patent number: 11495627
    Abstract: A single photon avalanche diode includes a silicon-on-insulator (SOI) substrate having a base substrate, a buried oxide layer over the base substrate, and a silicon layer over the buried oxide layer. At least one photodiode region is disposed in the base substrate. The photodiode region comprises an epitaxial layer embedded in the base substrate.
    Type: Grant
    Filed: May 10, 2020
    Date of Patent: November 8, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Shih-Hung Tsai
  • Publication number: 20220238677
    Abstract: A method for fabricating a nanowire transistor includes the steps of first forming a nanowire channel structure on a substrate, in which the nanowire channel structure includes first semiconductor layers and second semiconductor layers alternately disposed over one another. Next, a gate structure is formed on the nanowire channel structure and then a source/drain structure is formed adjacent to the gate structure, in which the source/drain structure is made of graphene.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 28, 2022
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai, Ching-Wen Hung, Chun-Hsien Lin
  • Patent number: 11387148
    Abstract: A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region, wherein each of the first fin-shaped structure and the second fin-shaped structure comprises a top portion and a bottom portion; a first doped layer around the bottom portion of the first fin-shaped structure; a second doped layer around the bottom portion of the second fin-shaped structure; a first liner on the first doped layer; and a second liner on the second doped layer.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: July 12, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Wei Feng, Shih-Hung Tsai, Chao-Hung Lin, Hon-Huei Liu, Shih-Fang Hong, Jyh-Shyang Jenq
  • Publication number: 20220093782
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed directly on the shallow recess.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Publication number: 20220093783
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed directly on the shallow recess.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Patent number: 11227944
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed directly on the shallow recess.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 18, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Publication number: 20210351211
    Abstract: A single photon avalanche diode includes a silicon-on-insulator (SOI) substrate having a base substrate, a buried oxide layer over the base substrate, and a silicon layer over the buried oxide layer. At least one photodiode region is disposed in the base substrate. The photodiode region comprises an epitaxial layer embedded in the base substrate.
    Type: Application
    Filed: May 10, 2020
    Publication date: November 11, 2021
    Inventor: Shih-Hung Tsai
  • Publication number: 20210057551
    Abstract: A method for fabricating semiconductor device includes the steps of: forming fin-shaped structures on a substrate; using isopropyl alcohol (IPA) to perform a rinse process; performing a baking process; and forming a gate oxide layer on the fin-shaped structures. Preferably, a duration of the rinse process is between 15 seconds to 60 seconds, a temperature of the baking process is between 50° C. to 100° C., and a duration of the baking process is between 5 seconds to 120 seconds.
    Type: Application
    Filed: November 6, 2020
    Publication date: February 25, 2021
    Inventors: Po-Chang Lin, Bo-Han Huang, Chih-Chung Chen, Chun-Hsien Lin, Shih-Hung Tsai, Po-Kuang Hsieh
  • Publication number: 20210050438
    Abstract: An HEMT includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed directly on the shallow recess.
    Type: Application
    Filed: September 23, 2019
    Publication date: February 18, 2021
    Inventors: Po-Kuang Hsieh, Shih-Hung Tsai
  • Patent number: 10868148
    Abstract: A method for fabricating semiconductor device includes the steps of: forming fin-shaped structures on a substrate; using isopropyl alcohol (IPA) to perform a rinse process; performing a baking process; and forming a gate oxide layer on the fin-shaped structures. Preferably, a duration of the rinse process is between 15 seconds to 60 seconds, a temperature of the baking process is between 50° C. to 100° C., and a duration of the baking process is between 5 seconds to 120 seconds.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: December 15, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Chang Lin, Bo-Han Huang, Chih-Chung Chen, Chun-Hsien Lin, Shih-Hung Tsai, Po-Kuang Hsieh
  • Publication number: 20200273758
    Abstract: A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region, wherein each of the first fin-shaped structure and the second fin-shaped structure comprises a top portion and a bottom portion; a first doped layer around the bottom portion of the first fin-shaped structure; a second doped layer around the bottom portion of the second fin-shaped structure; a first liner on the first doped layer; and a second liner on the second doped layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Li-Wei Feng, Shih-Hung Tsai, Chao-Hung Lin, Hon-Huei Liu, Shih-Fang Hong, Jyh-Shyang Jenq
  • Patent number: 10707135
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first well in the substrate on the first region and a second well in the substrate on the second region; removing part of the first well to form a first recess; and forming a first epitaxial layer in the first recess.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: July 7, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuan-Hao Tseng, Chien-Ting Lin, Shih-Hung Tsai, Po-Kuang Hsieh, Yu-Ting Tseng, Chueh-Fei Tai, Cheng-Ping Kuo
  • Patent number: 10692777
    Abstract: A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region, wherein each of the first fin-shaped structure and the second fin-shaped structure comprises a top portion and a bottom portion; a first doped layer around the bottom portion of the first fin-shaped structure; a second doped layer around the bottom portion of the second fin-shaped structure; a first liner on the first doped layer; and a second liner on the second doped layer.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: June 23, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Wei Feng, Shih-Hung Tsai, Chao-Hung Lin, Hon-Huei Liu, Shih-Fang Hong, Jyh-Shyang Jenq
  • Patent number: 10643997
    Abstract: A semiconductor device includes at least a substrate, fin-shaped structures, a protection layer, epitaxial layers, and a gate electrode. The fin-shaped structures are disposed in a first region and a second region of the substrate. The protection layer conformally covers the surface of the substrate and the sidewalls of fin-shaped structures. The epitaxial layers respectively conformally and directly cover the fin-shaped structures in the first region. The gate electrode covers the fin-shaped structures in the second region, and the protection layer is disposed between the gate electrode and the fin-shaped structures.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: May 5, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Wei Feng, Tong-Jyun Huang, Shih-Hung Tsai, Jia-Rong Wu, Tien-Chen Chan, Yu-Shu Lin, Jyh-Shyang Jenq
  • Publication number: 20200135899
    Abstract: A method for fabricating semiconductor device includes the steps of: forming fin-shaped structures on a substrate; using isopropyl alcohol (IPA) to perform a rinse process; performing a baking process; and forming a gate oxide layer on the fin-shaped structures. Preferably, a duration of the rinse process is between 15 seconds to 60 seconds, a temperature of the baking process is between 50° C. to 100° C., and a duration of the baking process is between 5 seconds to 120 seconds.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 30, 2020
    Inventors: Po-Chang Lin, Bo-Han Huang, Chih-Chung Chen, Chun-Hsien Lin, Shih-Hung Tsai, Po-Kuang Hsieh