Patents by Inventor Shih Wang

Shih Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996324
    Abstract: A method of forming a semiconductor device includes: forming a semiconductor feature over a substrate, the semiconductor feature includes a conductive region; forming a dielectric layer over the semiconductor feature; patterning the dielectric layer to form a contact opening exposing a top surface of the conductive region; forming a monolayer over the dielectric layer, the top surface of the conductive region remaining exposed; and depositing a conductive material in the contact opening.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: U-Ting Chiu, Po-Nan Yeh, Yu-Shih Wang, Chun-Neng Lin, Ming-Hsi Yeh
  • Patent number: 11988847
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a fixed portion, a first movable portion, a second movable portion, a first driving assembly, and a second driving assembly. The first movable portion is movable relative to the fixed portion. The second movable portion is used for holding an optical element having a main axis, and is movable relative to the first movable portion. The first driving assembly is used for driving the first movable portion to move in a first dimension relative to the fixed portion, and the second driving assembly is used for driving the second movable portion to move in a second dimension relative to the fixed portion. The first dimension and the second dimension are different.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: May 21, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Yun-Fei Wang, Yu-Huai Liao, Sheng-Zong Chen, Wei-Han Hsia, Kun-Shih Lin
  • Publication number: 20240161797
    Abstract: An integrated circuit (IC) device includes memory cells each including first through fourth memory elements. The first memory element is physically arranged, along a first axis, between a bit line and a first auxiliary conductive line. The second memory element is physically arranged, along the first axis, between a second auxiliary conductive line and a first conductor. The first and second memory elements are arranged in a first row along the first axis. The third memory element is physically arranged, along the first axis, between the first auxiliary conductive line and a second conductor electrically coupled to the first conductor. The fourth memory element is physically arranged, along the first axis, between the bit line and the second auxiliary conductive line. The third and fourth memory elements are arranged, along the first axis, in a second row spaced from the first row along an axis transverse to the first axis.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Inventors: Bo-Feng YOUNG, Yu-Ming LIN, Shih-Lien Linus LU, Han-Jong CHIA, Sai-Hooi YEONG, Chia-En HUANG, Yih WANG
  • Publication number: 20240145691
    Abstract: The present invention is related to a novel positive electrode active material for lithium-ion battery. The positive electrode active material is expressed by the following formula: Li1.2NixMn0.8-x-yZnyO2, wherein x and y satisfy 0<x?0.8 and 0<y?0.1. In addition, the present invention provides a method of manufacturing the positive electrode active material. The present invention further provides a lithium-ion battery which uses said positive electrode active material.
    Type: Application
    Filed: March 14, 2023
    Publication date: May 2, 2024
    Inventors: CHUAN-PU LIU, YIN-WEI CHENG, SHIH-AN WANG, BO-LIANG PENG, CHUN-HUNG CHEN, JUN-HAN HUANG, YI-CHANG LI
  • Publication number: 20240136183
    Abstract: A photo resist layer is used to protect a dielectric layer and conductive elements embedded in the dielectric layer when patterning an etch stop layer underlying the dielectric layer. The photo resist layer may further be used to etch another dielectric layer underlying the etch stop layer, where etching the next dielectric layer exposes a contact, such as a gate contact. The bottom layer can be used to protect the conductive elements embedded in the dielectric layer from a wet etchant used to etch the etch stop layer.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Yu-Shih Wang, Hong-Jie Yang, Chia-Ying Lee, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11964881
    Abstract: A method for making iridium oxide nanoparticles includes dissolving an iridium salt to obtain a salt-containing solution, mixing a complexing agent with the salt-containing solution to obtain a blend solution, and adding an oxidating agent to the blend solution to obtain a product mixture. A molar ratio of a complexing compound of the complexing agent to the iridium salt is controlled in a predetermined range so as to permit the product mixture to include iridium oxide nanoparticles.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Pu-Wei Wu, Yi-Chieh Hsieh, Han-Yi Wang, Kuang-Chih Tso, Tzu-Ying Chan, Chung-Kai Chang, Chi-Shih Chen, Yu-Ting Cheng
  • Publication number: 20240125771
    Abstract: The present invention relates to a reaction platform, which comprises: a machine body with a bottom plate for placing non-porous substrates; and a coater module configured on the top of the machine body and capable of maintaining a preset of a predetermined height for moving along the surface of non-porous substrate, wherein the coater module has one or more slits, and a target liquid can be directly injected or sucking in from the outside of the coater module through the slit, and spreading the target liquid onto a surface of the non-porous substrate while moving along the non-porous substrate; wherein the surface of the non-porous substrate has a target to be coated. The reaction platform of the present invention can not only save time, labor and cost, but also have accurate and reproducible experimental results, showing better results than traditional methods.
    Type: Application
    Filed: July 25, 2023
    Publication date: April 18, 2024
    Inventors: An-Bang Wang, Shih-Yu Chen, Tung-Hung Su, Chia-Chi Chu, Chia-Chien Yen, Yu-Wei Chiang
  • Patent number: 11957064
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20240112983
    Abstract: A semiconductor device includes a substrate, a semiconductor component and a heat dissipation component. The semiconductor component is disposed on the substrate. The heat dissipation component is disposed on the substrate and having a cavity, an inlet and an outlet, wherein the inlet and the outlet communicate with the cavity.
    Type: Application
    Filed: January 20, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li WANG, Chen-Hua YU, Chuei-Tang WANG, Shih-Chang KU
  • Publication number: 20240105444
    Abstract: Methods for reducing contact resistance include performing a selective titanium silicide (TiSi) deposition process on a middle of the line (MOL) contact structure that includes a cavity in a substrate of dielectric material. The contact structure also includes a silicon-based connection portion at a bottom of the cavity. The selective TiSi deposition process is selective to silicon-based material over dielectric material. The methods also include performing a selective deposition process of a metal material on the MOL contact structure. The selective deposition process is selective to TiSi material over dielectric material and forms a silicide capping layer on the silicon-based connection portion. The methods further include performing a seed layer deposition process of the metal material on the contact structure.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 28, 2024
    Inventors: Jiang LU, Liqi WU, Wei DOU, Weifeng YE, Shih Chung CHEN, Rongjun WANG, Xianmin TANG, Yiyang WAN, Shumao ZHANG, Jianqiu GUO
  • Patent number: 11941339
    Abstract: Described is technology for automatically generating a routing for an integrated circuit (IC) design. Information describing pin-pairs of an integrated circuit (IC) design is received. An initial routing of the IC design is determined by (i) defining connected wires between each pin-pair in the set of pin-pairs, and (ii) evaluating a target resistance for the pin-pair over the connected wires, wherein each connected wire is routed with other connected wires. A resistance adjustment is applied to adjust wire resistance of the connected wires of the initial routing. The resistance adjustment can be based on a square routing in response to a wire resistance being below the target resistance; or the resistance adjustment can be based on a multi-layer stacking in response to the wire resistance being above the target resistance. The routing is provided in patterns as generated by the initial routing and the resistance adjustment.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: March 26, 2024
    Assignee: Synopsys, Inc.
    Inventors: Linx Lin, Alex Tsai, Hung-Shih Wang
  • Publication number: 20240096630
    Abstract: Disclosed is a semiconductor fabrication method. The method includes forming a gate stack in an area previously occupied by a dummy gate structure; forming a first metal cap layer over the gate stack; forming a first dielectric cap layer over the first metal cap layer; selectively removing a portion of the gate stack and the first metal cap layer while leaving a sidewall portion of the first metal cap layer that extends along a sidewall of the first dielectric cap layer; forming a second metal cap layer over the gate stack and the first metal cap layer wherein a sidewall portion of the second metal cap layer extends further along a sidewall of the first dielectric cap layer; forming a second dielectric cap layer over the second metal cap layer; and flattening a top layer of the first dielectric cap layer and the second dielectric cap layer using planarization operations.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Jih-Sheng Yang, Shih-Chieh Chao, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Publication number: 20240090233
    Abstract: A semiconductor device includes a sense amplifier, a first magnetic tunneling junction (MTJ) connected to the sense amplifier at a first distance, a second MTJ connected to the sense amplifier at a second distance, and a third MTJ connected to the sense amplifier at a third distance. Preferably, the first distance is less than the second distance, the second distance is less than the third distance, a critical dimension of the first MTJ is less than a critical dimension of the second MTJ, and the critical dimension of the second MTJ is less than a critical dimension of the third MTJ.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Wei Wang, Yi-An Shih, Huan-Chi Ma
  • Patent number: 11926827
    Abstract: Provided herein are MAPT RNAi agents and compositions comprising a MAPT RNAi agent. Also provided herein are methods of using the MAPT RNAi agents or compositions comprising a MAPT RNAi agent for reducing MAPT expression and/or treating tauopathy in a subject.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: March 12, 2024
    Assignee: ELI LILLY AND COMPANY
    Inventors: Barbara Calamini, Sarah Katharina Fritschi, Rebecca Ruth Miles, Andrew Peter McCarthy, Douglas Raymond Perkins, Keith Geoffrey Phillips, Kaushambi Roy, Isabel Cristina Gonzalez Valcarcel, Jibo Wang, Shih-Ying Wu, Jeremy S. York
  • Publication number: 20240081157
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11923586
    Abstract: A combustion section defines an axial direction, a radial direction, and a circumferential direction. The combustion section includes a casing that defines a diffusion chamber. A combustion liner is disposed within the diffusion chamber and defines a combustion chamber. The combustion liner is spaced apart from the casing such that a passageway is defined between the combustion liner and the casing. A fuel cell assembly is disposed in the passageway. The fuel cell assembly includes a fuel cell stack having a plurality of fuel cells each extending between an inlet end and an outlet end. Each fuel cell of the plurality of fuel cells includes an air channel and a fuel channel each fluidly coupled to the combustion chamber.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: March 5, 2024
    Assignee: General Electric Company
    Inventors: Seung-Hyuck Hong, Richard L Hart, Honggang Wang, Anil Raj Duggal, Michael Anthony Benjamin, Andrew Wickersham, Shih-Yang Hsieh
  • Publication number: 20240072170
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor fin. The semiconductor device includes first spacers over the semiconductor fin. The semiconductor device includes a metal gate structure, over the semiconductor fin, that is sandwiched at least by the first spacers. The semiconductor device includes a gate electrode contacting the metal gate structure. An interface between the metal gate structure and the gate electrode has its side portions extending toward the semiconductor fin with a first distance and a central portion extending toward the semiconductor fin with a second distance, the first distance being substantially less than the second distance.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Yih-Ann Lin, Chia Ming Liang, Ryan Chia-Jen CHEN
  • Publication number: 20240074328
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on one side of the of the MTJ, a second spacer on another side of the MTJ, a first metal interconnection on the MTJ, and a liner adjacent to the first spacer, the second spacer, and the first metal interconnection. Preferably, each of a top surface of the MTJ and a bottom surface of the first metal interconnection includes a planar surface and two sidewalls of the first metal interconnection are aligned with two sidewalls of the MTJ.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11915787
    Abstract: An integrated circuit (IC) device includes a substrate, and a memory array layer having a plurality of transistors. First through fourth gate contacts are arranged along a first axis, and coupled to underlying gates of the plurality of transistors. First through fifth source/drain contacts in the memory array layer extend along a second axis transverse to the first axis, and are coupled to underlying source/drains of the plurality of transistors. The gate contacts and the source/drain contacts are alternatingly arranged along the first axis. A source line extends along the first axis, and is coupled to the first and fifth source/drain contacts. First and second word lines extend along the first axis, the first word line is coupled to the first and third gate contacts, and the second word line is coupled to the second and fourth gate contacts.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Feng Young, Yu-Ming Lin, Shih-Lien Linus Lu, Han-Jong Chia, Sai-Hooi Yeong, Chia-En Huang, Yih Wang
  • Patent number: 11901180
    Abstract: A photo resist layer is used to protect a dielectric layer and conductive elements embedded in the dielectric layer when patterning an etch stop layer underlying the dielectric layer. The photo resist layer may further be used to etch another dielectric layer underlying the etch stop layer, where etching the next dielectric layer exposes a contact, such as a gate contact. The bottom layer can be used to protect the conductive elements embedded in the dielectric layer from a wet etchant used to etch the etch stop layer.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Shih Wang, Hong-Jie Yang, Chia-Ying Lee, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang