Patents by Inventor Shiliang Lu

Shiliang Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11469121
    Abstract: A spin coating device and method. The spin coating device includes a rotatable rotary shaft and sucker fixed on an end portion of the shaft, and an electromagnetic induction device below the sucker which includes an annular magnet fixed below the sucker, coil group formed by a first and second coil, and strip-shaped magnet fixed at the rotary shaft. A base on the sucker has a notch. The unbalanced centrifugal force during rotation of the sucker causes vibration. The electromagnetic induction device enables the centrifugal force generated during rotation of the sucker to be in balance with the magnetic force generated by the electromagnetic induction device to adjust the levelness of the sucker surface. The device does not need manual manipulation, enables the sucker to be more stable, reduces damage to the equipment due to vibration, and improves the effect of photoresist spin-coating while saving time and labor.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 11, 2022
    Assignee: SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    Inventors: Shiliang Lu, Hang Ran, Yihui Li, Xiaoping Yan, Jun Zhao, Shanshan Chen
  • Publication number: 20200350182
    Abstract: A spin coating device and method. The spin coating device includes a rotatable rotary shaft and sucker fixed on an end portion of the shaft, and an electromagnetic induction device below the sucker which includes an annular magnet fixed below the sucker, coil group formed by a first and second coil, and strip-shaped magnet fixed at the rotary shaft. A base on the sucker has a notch. The unbalanced centrifugal force during rotation of the sucker causes vibration. The electromagnetic induction device enables the centrifugal force generated during rotation of the sucker to be in balance with the magnetic force generated by the electromagnetic induction device to adjust the levelness of the sucker surface. The device does not need manual manipulation, enables the sucker to be more stable, reduces damage to the equipment due to vibration, and improves the effect of photoresist spin-coating while saving time and labor.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 5, 2020
    Inventors: Shiliang LU, Hang RAN, Yihui LI, Xiaoping YAN, Jun ZHAO, Shanshan CHEN
  • Patent number: 7363182
    Abstract: Systems and methods for correcting measurements of fluid flow using device-specific information to compensate for differences between individual devices of the same design. In one embodiment, a method includes providing device-specific calibration data; sensing a fluid flow; computing a measured fluid flow based on the sensed fluid flow, and correcting the measured fluid flow based on the device-specific calibration data. More particularly, the fluid flow measurement is corrected using correction factors that compensate for the use of a gas that is different from the calibration gas (CF0 (1+aF+bF2+cF3)), for device variations in sensor sensitivity (1+??R), and for variations in the split flow of fluid through the flow meter (1???ADC(Sp/100)2). The sensor and split flow correction factors may be used independently of each other in some embodiments.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 22, 2008
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Shiliang Lu
  • Patent number: 7287434
    Abstract: One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 30, 2007
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Shiliang Lu
  • Patent number: 7243035
    Abstract: Systems and methods for correcting measurements of fluid flow using device-specific information to compensate for differences between individual devices of the same design. In one embodiment, a method includes providing device-specific calibration data; sensing a fluid flow; computing a measured fluid flow based on the sensed fluid flow, and correcting the measured fluid flow based on the device-specific calibration data. More particularly, the fluid flow measurement is corrected using correction factors that compensate for the use of a gas that is different from the calibration gas (CF0(1+aF+bF2+cF3)), for device variations in sensor sensitivity (1+??R), and for variations in the split flow of fluid through the flow meter (1???ADC(Sp/100)2). The sensor and split flow correction factors may be used independently of each other in some embodiments.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: July 10, 2007
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Shiliang Lu
  • Patent number: 7150201
    Abstract: One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: December 19, 2006
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Shiliang Lu
  • Publication number: 20060123920
    Abstract: One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
    Type: Application
    Filed: December 15, 2004
    Publication date: June 15, 2006
    Inventors: Stuart Tison, Shiliang Lu
  • Publication number: 20060123921
    Abstract: One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 15, 2006
    Inventors: Stuart Tison, Shiliang Lu
  • Publication number: 20050205774
    Abstract: Systems and methods for correcting measurements of fluid flow using device- specific information to compensate for differences between individual devices of the same design. In one embodiment, a method comprises providing device-specific calibration data; sensing a fluid flow; computing a measured fluid flow based on the sensed fluid flow, and correcting the measured fluid flow based on the device-specific calibration data. More particularly, the fluid flow measurement is corrected using correction factors that compensate for the use of a gas that is different from the calibration gas (CF0 (1+aF+bF2+cF3)), for device variations in sensor sensitivity (1+??R), and for variations in the split flow of fluid through the flow meter (1???ADC(Sp/100)2). The sensor and split flow correction factors may be used independently of each other in some embodiments.
    Type: Application
    Filed: May 13, 2005
    Publication date: September 22, 2005
    Inventors: Stuart Tison, Shiliang Lu
  • Publication number: 20040030522
    Abstract: Systems and methods for correcting measurements of fluid flow using device-specific information to compensate for differences between individual devices of the same design. In one embodiment, a method comprises providing device-specific calibration data; sensing a fluid flow; computing a measured fluid flow based on the sensed fluid flow, and correcting the measured fluid flow based on the device-specific calibration data. More particularly, the fluid flow measurement is corrected using correction factors that compensate for the use of a gas that is different from the calibration gas (CF0(1+aF+bF2+cF3)), for device variations in sensor sensitivity (1+&agr;&Dgr;R), and for variations in the split flow of fluid through the flow meter (1-&bgr;&Dgr;ADC(Sp/100)2). The sensor and split flow correction factors may be used independently of each other in some embodiments.
    Type: Application
    Filed: May 23, 2003
    Publication date: February 12, 2004
    Inventors: Stuart A. Tison, Shiliang Lu