Patents by Inventor Shin-Cheng Lin

Shin-Cheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10229907
    Abstract: A semiconductor device includes a substrate, first and second body regions, a well region, a source region, a drain region, and first and second doped regions. The first and second body regions are disposed in first and second regions respectively. The well region is disposed in the first and second regions and between the first and second body regions. First and second portions of the source region are disposed in the first and second body regions respectively. The drain region is disposed on the well region. The first doped region is disposed in the well region. The second doped region is disposed on the first doped region. A first portion of the first doped region and a first portion of the second doped region are disposed in the well region of the first region and extend toward the first body region and out of the well region.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 12, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Tsung Wu, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Publication number: 20190067431
    Abstract: A HEMT device is provided. The HEMT device includes a substrate, a first epitaxial layer, a second epitaxial layer, an insulating layer, a gate, a source, and a drain. The first epitaxial layer is formed on the substrate. The second epitaxial layer is formed on the first epitaxial layer. The insulating layer is formed on the second epitaxial layer. The gate is formed in the insulating layer and extends into the second epitaxial layer. The source and the drain are formed in the insulating layer and extend into the second epitaxial layer, wherein the source and the drain are located on both sides of the gate.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 28, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Chih LIN, Shin-Cheng LIN, Yung-Hao LIN
  • Publication number: 20190067190
    Abstract: A semiconductor structure including a substrate, a first well, a first doped region, a second well, a second doped region, a field oxide, a first conductive layer, a first insulating layer and a second conductive layer is provided. Each of the substrate and the second well has a first conductivity type. The first and second wells are formed in the substrate. The first well has a second conductivity type. The first doped region is formed in the first well and has the second conductivity type. The second doped region is formed in the second well and has the first conductivity type. The field oxide is disposed on the substrate and is disposed between the first and second doped regions. The first conductive layer overlaps the field oxide. The first insulating layer overlaps the first conductive layer. The second conductive layer overlaps the first insulating layer.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Cheng-Tsung WU, Shin-Cheng LIN, Yu-Hao HO, Wen-Hsin LIN
  • Publication number: 20190067430
    Abstract: A HEMT device is provided. The HEMT device includes a substrate, a first epitaxial layer, a second epitaxial layer, an insulating layer, a gate, a source, and a drain. The first epitaxial layer is formed on the substrate. The second epitaxial layer is formed on the first epitaxial layer. The insulating layer is formed on the second epitaxial layer. The gate is formed in the insulating layer and extends into the second epitaxial layer. The source and the drain are formed in the insulating layer and extend into the second epitaxial layer, wherein the source and the drain are located on both sides of the gate.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Chih LIN, Shin-Cheng LIN, Yung-Hao LIN
  • Patent number: 10217831
    Abstract: A HEMT device is provided. The HEMT device includes a substrate, a first epitaxial layer, a second epitaxial layer, an insulating layer, a gate, a source, and a drain. The first epitaxial layer is formed on the substrate. The second epitaxial layer is formed on the first epitaxial layer. The insulating layer is formed on the second epitaxial layer. The gate is formed in the insulating layer and extends into the second epitaxial layer. The source and the drain are formed in the insulating layer and extend into the second epitaxial layer, wherein the source and the drain are located on both sides of the gate.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 26, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Chih Lin, Shin-Cheng Lin, Yung-Hao Lin
  • Patent number: 10217854
    Abstract: The embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a first III-V compound layer disposed over a substrate and a second III-V compound layer disposed over the first III-V compound layer, wherein a first carrier channel is formed in the interface between the first III-V compound layer and the second III-V compound layer. The semiconductor device also includes a third III-V compound layer disposed over the second III-V compound layer and a fourth III-V compound layer disposed over the third III-V compound layer, wherein a second carrier channel is formed in an interface between the third III-V compound layer and the fourth III-V compound layer. The semiconductor device includes a gate structure and S/D regions disposed on two opposite sides of the gate structure, wherein the first carrier channel and the second carrier channel are extended between the S/D regions.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 26, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Yung-Hao Lin, Shin-Cheng Lin, Hsin-Chih Lin
  • Patent number: 10205014
    Abstract: A semiconductor device is provided. The device includes a substrate having a first conductivity type. The device further includes a drain region, a source region, and a well region disposed in the substrate. The well region is disposed between the drain region and the source region and having a second conductivity type opposite to the first conductivity type. The device further includes a plurality of doped regions disposed within the well region. The doped regions are vertically and horizontally offset from each other. Each of the doped regions includes a lower portion having the first conductivity type, and an upper portion stacked on the lower region and having the second conductivity type.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 12, 2019
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shang-Hui Tu, Chih-Jen Huang, Jui-Chun Chang, Shin-Cheng Lin, Yu-Hao Ho, Wen-Hsin Lin
  • Patent number: 10181512
    Abstract: A junction field effect transistor includes a substrate and a gate region having a first conductive type in the substrate. Source/drain regions of a second conductive type opposite to the first conductive type are disposed in the substrate on opposite sides of the gate region. A pair of high-voltage well regions of the second conductive type are disposed beneath the source/drain regions. A channel region is provided beneath the gate region and between the pair of high-voltage well regions. The channel region is of the second conductive type and has a dopant concentration lower than that of the pair of high-voltage well regions.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 15, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Shin-Cheng Lin, Cheng-Tsung Wu, Yu-Hao Ho
  • Publication number: 20190006355
    Abstract: A semiconductor structure is provided. A semiconductor substrate has a first conductivity type. A first well is formed in the semiconductor substrate and has a second conductivity type. A first well includes a first region and a second region. The dopant concentration of the first region is higher than the dopant concentration of the second region. A second well has the first conductivity type and is formed in the first region. A first doped region is formed in the first region and has the second conductivity type different than the first conductivity type. The second doped region has the first conductivity type and is formed in the second well. A third doped region has the first conductivity type and is formed in the second region. A fourth doped region has the second conductivity type and is formed in the first region.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsin LIN, Shin-Cheng LIN, Cheng-Tsung WU, Yu-Hao HO
  • Patent number: 10170468
    Abstract: A semiconductor structure is provided. A semiconductor substrate has a first conductivity type. A first well is formed in the semiconductor substrate and has a second conductivity type. A first well includes a first region and a second region. The dopant concentration of the first region is higher than the dopant concentration of the second region. A second well has the first conductivity type and is formed in the first region. A first doped region is formed in the first region and has the second conductivity type different than the first conductivity type. The second doped region has the first conductivity type and is formed in the second well. A third doped region has the first conductivity type and is formed in the second region. A fourth doped region has the second conductivity type and is formed in the first region.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: January 1, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Shin-Cheng Lin, Cheng-Tsung Wu, Yu-Hao Ho
  • Publication number: 20180350799
    Abstract: A semiconductor structure is provided. A substrate has a first conductivity type. A first well and a second well are formed in the substrate. The first well has a second conductivity type. The second well has the first conductivity type. A doped region is formed in the first well and has the second conductivity type. A gate structure is disposed over the substrate and overlaps a portion of the first well and a portion of the second well. An insulating layer is disposed over the substrate and is spaced apart from the gate structure. A conducting wire is disposed on the insulating layer and includes a first input terminal and a first output terminal. The first input terminal is configured to receive an input voltage. The first output terminal is electrically connected to the doped region.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Yu-Hao HO, Shin-Cheng LIN, Wen-Hsin LIN, Cheng-Tsung WU
  • Patent number: 10128331
    Abstract: A high-voltage semiconductor device is provided. The device includes an epitaxial layer formed on a semiconductor substrate. The semiconductor substrate includes a first doping region having a first conductivity type. The epitaxial layer includes a body region that has a second conductivity type and a second doping region and a third doping region that have the first conductivity type. The second doping region and the third doping region are respectively on both opposite sides of the body region. A source region and a drain region are respectively in the body region and the second doping region. A gate structure is on the epitaxial layer. A fourth doping region having the second conductivity region is below the source region and adjacent to the bottom of the body region. The fourth doping region has a doping concentration greater than that of the body region.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: November 13, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Tsung Wu, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Publication number: 20180308934
    Abstract: A junction field effect transistor includes a substrate and a gate region having a first conductive type in the substrate. Source/drain regions of a second conductive type opposite to the first conductive type are disposed in the substrate on opposite sides of the gate region. A pair of high-voltage well regions of the second conductive type are disposed beneath the source/drain regions. A channel region is provided beneath the gate region and between the pair of high-voltage well regions. The channel region is of the second conductive type and has a dopant concentration lower than that of the pair of high-voltage well regions.
    Type: Application
    Filed: January 10, 2018
    Publication date: October 25, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsin LIN, Shin-Cheng LIN, Cheng-Tsung WU, Yu-Hao HO
  • Patent number: 10068986
    Abstract: Embodiments of the disclosure relate to an enhanced-mode high electron mobility transistor. The enhanced-mode high electron mobility transistor includes a substrate, a first III-V semiconductor layer disposed on the substrate, a second III-V semiconductor layer disposed on the first III-V semiconductor layer, a third III-V semiconductor layer disposed on the second III-V semiconductor layer, an amorphous region extending from the third III-V semiconductor layer into the second III-V semiconductor layer and the first III-V semiconductor layer to serve as an isolation region, and a gate electrode disposed in the amorphous region. The second III-V semiconductor layer and the third III-V semiconductor layer include different materials to form a heterojunction.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 4, 2018
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chien-Wei Chiu, Shin-Cheng Lin, Yung-Hao Lin
  • Patent number: 10043901
    Abstract: An ultra-high voltage device is provided. The ultra-high voltage device includes a substrate, a first well zone formed in the substrate, a second well zone having a surface formed in the substrate adjacent to the first well zone, a gate oxide formed on the first well zone and the second well zone of the substrate, a gate formed on the gate oxide, a channel formed in the first well zone underneath the gate oxide, an accumulation region formed in the second well zone underneath the gate oxide adjacent to the channel, wherein only a part of the accumulation region is implanted with a dopant to form an implant region therein, and an insulation region formed on the surface of the second well zone of the substrate adjacent to the accumulation region, wherein a boundary is formed between the insulation region and the accumulation region.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 7, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Yu-Hao Ho, Shin-Cheng Lin
  • Patent number: 10033260
    Abstract: A switch-mode converter includes a high-side driver, a high-side transistor, a low-side driver, a low-side transistor, a capacitor, and an active diode. The high-side driver is supplied by the bootstrap voltage of the bootstrap node and a floating reference voltage of a floating reference node, and generates the high-side output signal. The high-side transistor provides an input voltage to the floating reference node according to the high-side output signal. The low-side driver generates the low-side output signal. The low-side transistor couples the floating reference node to a ground according to the low-side output signal. The capacitor is coupled between the bootstrap node and the floating reference node. The active diode provides the supply voltage to the bootstrap node. When the bootstrap voltage exceeds the supply voltage, the active diode isolates the supply voltage from the bootstrap node.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 24, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Yu-Lung Chin, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Patent number: 10032938
    Abstract: A semiconductor device includes a first gallium nitride layer disposed on a semiconductor substrate, wherein the first gallium nitride layer has a first conductivity type. The semiconductor device also includes a second gallium nitride layer disposed on the first gallium nitride layer, wherein the second gallium nitride layer has the first conductivity type, and the first gallium nitride layer has a dopant concentration which is greater than that of the second gallium nitride layer. The semiconductor device further includes an anode electrode disposed on the second gallium nitride layer, a cathode electrode disposed on and in direct contact with the first gallium nitride layer, and an insulating region disposed on and in direct contact with the first gallium nitride layer, wherein the insulating region is located between the cathode electrode and the second gallium nitride layer.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: July 24, 2018
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chien-Wei Chiu, Shin-Cheng Lin, Yung-Hao Lin
  • Patent number: 10014408
    Abstract: A semiconductor device includes a semiconductor substrate having a first conductivity type, and a first well region disposed in the semiconductor substrate, wherein the first well region has a second conductivity type opposite to the first conductivity type. The semiconductor device also includes a buried layer disposed in the semiconductor substrate and under the first well region, wherein the buried layer has the first conductivity type and is in contact with the first well region. The semiconductor device further includes a source electrode, a drain electrode and a gate structure disposed on the semiconductor substrate, wherein the gate structure is located between the source electrode and the drain electrode.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 3, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shin-Cheng Lin, Yu-Hao Ho, Wen-Hsin Lin, Cheng-Tsung Wu, Manoj Kumar
  • Patent number: 10002956
    Abstract: A high electron mobility transistor includes a buffer layer disposed on a substrate. A barrier layer is disposed on the buffer layer. A channel layer is disposed in the buffer layer and is adjacent to the interface between the buffer layer and the barrier layer. A gate electrode is disposed on the barrier layer. A drain electrode is disposed on the barrier layer on a first side of the gate electrode. A source electrode is disposed on the barrier layer on a second side of the gate electrode. A first enhancement layer is disposed on the barrier layer and the channel layer between the gate electrode and the drain electrode and is not in direct contact with the gate electrode, the source electrode, or the drain electrode. The first enhancement layer is an N-type doped III-V semiconductor.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: June 19, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shin-Cheng Lin, Hsin-Chih Lin, Yung-Hao Lin, Chia-Ching Huang
  • Patent number: 9947653
    Abstract: A high-voltage semiconductor device includes a MOS device and a resistor device. The MOS device has a source, a drain, a drain insulation region adjacent to the drain, and a gate adjacent to the source. The resistor device is formed on the drain insulation region and is electrically connected to the drain. The resistor device has a plurality of resistor sections connected in series, and each of the plurality of resistor sections has a curved shape.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 17, 2018
    Assignee: VANGAURD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shin-Cheng Lin, Hsiao-Ling Chiang