Patents by Inventor Shinichiro Yamada

Shinichiro Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160028135
    Abstract: An electrode includes a plant-derived porous carbon material. When a peak value of an O(1s) spectrum of the porous carbon material obtained by X-ray photoelectron spectroscopy is defined as PO, and a peak value of a C(1s) spectrum thereof is defined as PC, PO/PC?0.05, or an oxygen-containing functional group has been removed from a surface of the plant-derived porous carbon material.
    Type: Application
    Filed: March 20, 2014
    Publication date: January 28, 2016
    Applicant: SONY CORPORATION
    Inventors: HIRONORI IIDA, SEIICHIRO TABATA, SHUN YAMANOI, SHINICHIRO YAMADA
  • Publication number: 20160023185
    Abstract: There is provided an adsorbing material for a filter for air purification, which is made of a porous carbon material derived from a plant and in which a value of particle porosity epsilonp is 0.7 or more.
    Type: Application
    Filed: March 3, 2014
    Publication date: January 28, 2016
    Inventors: Seiichiro TABATA, Hironori IIDA, Shun YAMANOI, Shinichiro YAMADA
  • Publication number: 20150357637
    Abstract: The present invention relates to a composite material for electrodes, which contains a plant-derived porous carbon material having a pore volume according to an MP method of 0.1 cm3/gram or more, or a volume of pores measuring less than 100 nm according to a BJH method of 0.3 cm3/gram or more; and lithium sulfide supported on the pores present in the porous carbon material, and in which the pore volume according to the MP method is less than 0.1 cm3/gram, or the volume of pores measuring less than 100 nm according to the BJH method is less than 0.3 cm3/gram.
    Type: Application
    Filed: January 6, 2014
    Publication date: December 10, 2015
    Applicant: SONY CORPORATION
    Inventors: Shun YAMANOI, Seiichiro TABATA, Hironori IIDA, Shinichiro YAMADA
  • Publication number: 20150349331
    Abstract: Provided is an electrode material for secondary batteries, including a porous carbon material being derived from a plant and having an average particle size of less than 4 ?m.
    Type: Application
    Filed: October 17, 2013
    Publication date: December 3, 2015
    Applicant: SONY CORPPRATION
    Inventors: Shun YAMANOI, Seiichiro TABATA, Hironori IIDA, Shinichiro YAMADA
  • Patent number: 9169840
    Abstract: A screw compressor includes a valve hole formed at a discharge side end surface of a discharge casing and at a position opening to a compression work chamber; a bypass flow path having the valve hole and a discharge chamber communicate with each other; and a valve body arranged in the valve hole. The screw compressor also includes cylinder chambers provided on a rear surface side of the valve body; a piston reciprocally moving in the cylinder chambers; a rod connecting the piston and the valve body; communication paths for introducing a fluid on a discharge side into the cylinder chamber on a side opposite to a valve body side of the piston and on the valve body side; a pressure discharge path; a plurality of valve means; and a controller controlling the plurality of valves means.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: October 27, 2015
    Assignee: Hitachi Appliances, Inc.
    Inventors: Ryuichiro Yonemoto, Eisuke Kato, Masayuki Urashin, Shinichiro Yamada
  • Publication number: 20150237988
    Abstract: Provided is a fiber composite for the application of a liquid, including a fibrous member containing a porous carbon material having a specific surface area value by the nitrogen BET method of 10 m2/g or more, and a pore volume by the BJH method of 0.2 cm3/g or more.
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Inventors: Yukiko Tashiro, Seiichiro Tabata, Shinichiro Yamada, Shun Yamanoi, Mechiko Minatoya, Hironori Iida
  • Publication number: 20150118477
    Abstract: Disclosed herein is a fungicide, including: a porous carbon material; and a silver member adhered to the porous carbon material, wherein a value of a specific surface area based on a nitrogen BET, namely Brunauer, Emmett, and Teller method is equal to or larger than 10 m2/g, and a volume of a fine pore based on a BJH, namely Barrett, Joyner, and Halenda method and an MP, namely Micro Pore method is equal to or larger than 0.1 cm3/g.
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Applicant: Sony Corporation
    Inventors: Hironori Iida, Shun Yamanoi, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Publication number: 20140300368
    Abstract: In a surface potential distribution measuring device for an electric field reduction system of a rotating electrical machine, a Pockels crystal is used between a laser and the surface (test location) of the electric field reduction system. Thus, the light Light intensity of a laser beam reflected on a mirror provided between the Pockels crystal and the test location corresponds to an output voltage that is the voltage difference between the first end surface and the second end surface of the Pockels crystal. Even when an inverter voltage is generated, by using a light detector having a frequency band capable of following the high frequency components of the inverter pulse voltage, the light intensity is detected by the light detector. Therefore, from the light intensity (output voltage), the surface potential distribution measuring device can measure the surface potential of the electric field reduction system in which an inverter pulse voltage is generated.
    Type: Application
    Filed: November 21, 2012
    Publication date: October 9, 2014
    Applicants: Toshiba Mitsubishi-Electric Industrial Sys. Corp., The University of Tokyo
    Inventors: Yuichi Tsuboi, Shinichiro Yamada, Tetsuo Yoshimitsu, Kunihiko Hidaka, Akiko Kumada, Hisatoshi Ikeda
  • Publication number: 20140287306
    Abstract: An electrode material is provided. The electrode material includes a porous carbon material, wherein the porous carbon material has a half-width of diffraction intensity peak of a (100) face or a (101) face of 4 degrees or less with reference to a diffraction angle 2 theta on a basis of an X-ray diffraction method. An absolute value of a differential value of mass can be obtained when a mixture of the porous carbon material and S8 sulfur mixed at a mass ratio of 1:2 is subjected to thermal analysis, where temperature is employed as a parameter, has a value of more than 0 at 450° C. and a value of 1.9 or more at 400° C. A battery and method of manufacture are also provided.
    Type: Application
    Filed: July 19, 2013
    Publication date: September 25, 2014
    Applicant: Sony Corporation
    Inventors: Kazumasa Takeshi, Seiichiro Tabata, Hironori Iida, Shun Yamanoi, Yosuke Saito, Koichiro Hinokuma, Shinichiro Yamada
  • Publication number: 20140261466
    Abstract: Provided is an absorbent including silica of which a raw material is a material originating from a plant which includes silicon, and a silane coupling agent which modifies a surface of the silica. A value of a specific surface area of the silica in accordance with a nitrogen BET method is 10 m2/g or more, and a pore volume of the silica in accordance with a BJH method is 0.1 cm3/g or more.
    Type: Application
    Filed: October 2, 2012
    Publication date: September 18, 2014
    Inventors: Shun Yamanoi, Hironori Iida, Seiichiro Tabata, Machiko Minatoya, Shinichiro Yamada
  • Publication number: 20140231342
    Abstract: A filter medium of the present invention includes a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a volume of fine pores by a BJH method of 0.3 cm3/g or more, and a particle size of 75 ?m or more, alternatively, a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a total of volumes of fine pores having a diameter of from 1×10?9 m to 5×10?7 m, obtained by a non-localized density functional theory method, of 1.0 cm3/g or more, and a particle size of 75 ?m or more.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 21, 2014
    Applicant: SONY CORPORANIZATION
    Inventors: Shun Yamanoi, Hironori Iida, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Publication number: 20140220459
    Abstract: An electrode includes a plant-derived porous carbon material having an ability to catalyze oxygen reduction.
    Type: Application
    Filed: January 29, 2014
    Publication date: August 7, 2014
    Applicant: SONY CORPORATION
    Inventors: Hironori Iida, Kenichi Murata, Takaaki Nakagawa, Shinichiro Yamada
  • Publication number: 20140162134
    Abstract: A gel electrolyte secondary cell includes a positive electrode, a negative electrode and a gel electrolyte. The negative electrode includes a current collector, and a mixture of powders of a graphite carbonaceous material and a binder. The powders of the graphite carbonaceous material include sintered meso-carbon micro-beads. The gel electrolyte includes an electrolyte salt, a non-aqueous solvent and a high-molecular weight material. The non-aqueous solvent includes propylene carbonate and ethylene carbonate. A content of propylene carbonate ranges from 35 mol % to 75 mol %. The binder is in an amount 1 to 20 wt % based on total weight of the powders of the graphite carbonaceous material. The meso-carbon micro-beads can suitably decrease the impedance and the discharge capacity loss, thereby increasing the discharging capacity and/or charging/discharging efficiency of the gel electrolyte secondary cell.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Sony Corporation
    Inventors: Tadashi Senoo, Hiroyuki Akashi, Hideto Azuma, Mashio Shibuya, Kazuhiro Noda, Shinichiro Yamada, Toshikazu Yasuda, Koji Sekai
  • Patent number: 8674208
    Abstract: A thermoelectric generation method using a thermoelectric generator includes: placing a thermoelectric generator in a temperature-changing atmosphere; drawing to outside a current that is generated due to a temperature difference between first and second support members when the temperature of the second support member is higher than that of the first support member, and that flows from a second thermoelectric conversion member to a first thermoelectric conversion member, using first and second output sections as a positive terminal and a negative terminal, respectively; and drawing to outside a current that is generated due to a temperature difference between the first and second support members when the temperature of the first support member is higher than that of the second support member, and that flows from a fourth thermoelectric conversion member to a third thermoelectric conversion member, using third and fourth output sections as a positive terminal and a negative terminal, respectively.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 18, 2014
    Assignee: Sony Corporation
    Inventors: Masakazu Yajima, Masayoshi Kanno, Shinichiro Yamada
  • Publication number: 20140048113
    Abstract: A thermoelectric generation method using a thermoelectric generator includes: placing a thermoelectric generator in a temperature-changing atmosphere; drawing to outside a current that is generated due to a temperature difference between first and second support members when the temperature of the second support member is higher than that of the first support member, and that flows from a second thermoelectric conversion member to a first thermoelectric conversion member, using first and second output sections as a positive terminal and a negative terminal, respectively; and drawing to outside a current that is generated due to a temperature difference between the first and second support members when the temperature of the first support member is higher than that of the second support member, and that flows from a fourth thermoelectric conversion member to a third thermoelectric conversion member, using third and fourth output sections as a positive terminal and a negative terminal, respectively.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: Sony Corporation
    Inventors: Masakazu Yajima, Masayoshi Kanno, Shinichiro Yamada
  • Publication number: 20140011666
    Abstract: [Object] To provide a porous carbon material that is able to adsorb desired substances efficiently. [Solving Means] A porous carbon material of the present invention uses peat as a raw material, and has a total of volumes of fine pores having a diameter of from 1×10?8 m to 2×10?7 m, obtained by non-localized density functional theory method, of 0.5 cm3/g or more, or has a volume of fine pores obtained by BHJ method of 0.5 cm3/g or more.
    Type: Application
    Filed: March 7, 2012
    Publication date: January 9, 2014
    Applicant: SONY CORPORATION
    Inventors: Makoto Yoshizaki, Hironori Lida, Takashi Obikawa, Shinichiro Yamada, Seiichiro Tabata, Kazuma Usami, Masakazu Mitsugi, Hirotsugu Ishihara, Shun Yamanoi, Machiko Minatoya
  • Publication number: 20130324398
    Abstract: [Object] To provide an adsorbent, an adsorbent sheet, and a carbon/polymer composite for adsorbing a virus having further improved virus adsorption capability. [Solving Means] An adsorbent for adsorbing a virus according to the present invention has a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more. An adsorbent sheet for adsorbing a virus according to the present invention includes a porous carbonaceous material having a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more. A carbon/polymer composite for adsorbing a virus according to the present invention includes a porous carbonaceous material having a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more; and a binder.
    Type: Application
    Filed: February 3, 2012
    Publication date: December 5, 2013
    Applicant: Sony Corporation
    Inventors: Hironori Iida, Shun Yamanoi, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Publication number: 20130315817
    Abstract: [Object] To provide a method for removing oxidative stress substances such as oxygen radical species from a liquid (for example, water) reliably when the liquid is used by a user. [Solving Means] A method for removing oxidative stress substances according to the present disclosure uses a porous carbon material having a value of a specific surface area based on nitrogen BET method of 10 m2/g or more; a volume of fine pores based on BJH method and MP method of 0.1 cm3/g or more, desirably 0.2 cm3/g or more; to remove oxidative stress substances contained in a liquid.
    Type: Application
    Filed: February 3, 2012
    Publication date: November 28, 2013
    Applicant: SONY CORPORATION
    Inventors: Shun Yamanoi, Seiichiro Tabata, Machiko Minatoya, Hironori Iida, Shinichiro Yamada
  • Publication number: 20130310253
    Abstract: [Object] To provide a cholesterol lowering agent, a neutral fat lowering agent, a blood glucose level lowering agent, a cholesterol adsorbent, and a neutral fat adsorbent, which have high safety. [Solving Means] A cholesterol lowering agent, a neutral fat lowering agent, a blood glucose level lowering agent, a cholesterol adsorbent, and a neutral fat adsorbent include a porous carbon material having a specific surface area value of 10 m2/g or more and a pore volume of 0.1 cm3/g or more, the specific surface area value being measured by a nitrogen BET method, the pore volume being measured by a BJH method and an MP method.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 21, 2013
    Applicant: Sony Corporation
    Inventors: Seiichiro Tabata, Machiko Minatoya, Hironori Iida, Takeshi Horie, Shinichiro Yamada, Shun Yamanoi
  • Publication number: 20130280617
    Abstract: A gel electrolyte secondary cell in which discharge capacity loss can be suppressed even with the use of a graphitized carbonaceous material of a small particle size as a negative electrode material to assure low impedance, superior cell voltage and load characteristics and high charging/discharging efficiency. To this end, a graphitized carbonaceous material prepared by firing meso-carbon micro-beads is used as a material for a negative electrode.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 24, 2013
    Inventors: Tadashi Senoo, Hiroyuki Akashi, Hideto Azuma, Mashio Shibuya, Kazuhiro Noda, Shinichiro Yamada, Toshikazu Yasuda, Koji Sekai