Patents by Inventor Shinsuke Takeguchi

Shinsuke Takeguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7635532
    Abstract: A decrease in voltage in a polymer electrolyte fuel cell comprising stack of unit cells caused by the temperature difference between the cells located at the ends and the other cells due to a differential in heat dissipation from end plates is prevented by controlling the cooling temperature of the cells closest to the end plates of the fuel cell without affecting the output voltage of the cells in the middle by not including a coolant flow channel in the conductive separator plate between at least one of the end plates and the unit cell located closest to the one of the end plates.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: December 22, 2009
    Assignee: Panasonic Corporation
    Inventors: Nobuhiro Hase, Hiroki Kusakabe, Hideo Ohara, Shinsuke Takeguchi, Yoshiaki Yamamoto, Tatsuto Yamazaki, Masayo Sugou, legal representative
  • Publication number: 20090274940
    Abstract: A fuel cell (101) of the present invention includes: a stack (1) formed such that one or more reacting portions (P) which generate electric power and heat by a reaction of a reactant gas and one or more heat transferring portions (H) which exchange heat with the reacting portions (P) by flow of a heat medium are arranged adjacent to each other in a stack direction of cells (2) by stacking the cells (2); a first heat medium supply manifold (8A) through which the heat medium is supplied to the heat transferring portions formed at both end portions (E) of the stack in the stack direction; a second heat medium supply manifold (8B) through which the heat medium is supplied to the heat transferring portions formed at a remaining portion (R) of the stack which portion is a portion other than the end portions of the stack; and a heat medium discharge manifold (9) through which the heat medium is discharged from the heat transferring portions.
    Type: Application
    Filed: July 27, 2007
    Publication date: November 5, 2009
    Inventors: Junji Morita, Yasushi Sugawara, Takayuki Urata, Takahiro Umeda, Shinsuke Takeguchi
  • Patent number: 7611786
    Abstract: A polymer electrolyte fuel cell power generation system is disclosed which comprises: a fuel cell having a plurality of cells each having a polymer electrolyte membrane and an anode and cathode that are formed so as to sandwich the polymer electrolyte membrane therebetween, a fuel gas path formed so as to guide fuel gas from an inlet of the fuel gas to the anode of each cell and discharge the fuel gas to the outside therefrom, an oxidizing gas path formed so as to guide oxidizing gas from an inlet of the oxidizing gas to the cathode of each cell and discharge the oxidizing gas to the outside therefrom, and a cooling fluid path formed so as to guide a cooling fluid from an inlet of the cooling fluid to a cooling fluid supply manifold and then to a region opposite to power generation regions constituted by the anodes and cathodes of the plurality of cells and discharge the cooling fluid to the outside therefrom through an outlet of the cooling fluid, the fuel cell being configured to generate electric power
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: November 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Kazuhito Hatoh, Hiroki Kusakabe, Shinsuke Takeguchi, Yasuhiro Seki
  • Publication number: 20090202882
    Abstract: A polymer electrolyte fuel cell includes a cell stack (51) formed by stacking cells (11), each of which includes: an MEA (5) having a polymer electrolyte membrane (1), and an anode (4a) and a cathode (4b) sandwiching the polymer electrolyte membrane (1); and an anode separator (6a) and a cathode separator (6b) disposed to sandwich the MEA (5), an anode gas internal supplying channel is formed to supply a fuel gas and air to the anode (4a), and a CO removing catalyst layer (61) containing a CO removing catalyst is formed in the anode gas internal supplying channel.
    Type: Application
    Filed: March 28, 2007
    Publication date: August 13, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Shinsuke Takeguchi, Yoichiro Tsuji
  • Publication number: 20090162727
    Abstract: A fuel cell separator and a fuel cell are provided that can improve uniformity in reaction gas flow rate and can prevent flooding due to excessive condensed water in passage grooves appropriately. A reaction gas passage region (101) of a separator (2) has a flow splitting region (21) having a passage groove group where the reaction gas is split, and one or more flow merge regions (22) having a recessed portion in which the reaction gas is mixed and connecting a plurality of flow splitting regions so that the passage groove group of the adjacent flow splitting regions (21) are connected to the recessed portion, and protrusions (27) vertically extend from a bottom face of the recessed portion and arranged in an island form. A pair of passage groove groups connected to the recessed portion of the flow merge region (22) is formed so as to have a greater number of grooves in the upstream passage groove group than the number of grooves of grooves in the downstream passage groove group.
    Type: Application
    Filed: August 4, 2006
    Publication date: June 25, 2009
    Inventors: Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Yoshiki Nagao, Shinsuke Takeguchi, Yasuo Takebe, Masaki Nobuoka
  • Publication number: 20090136823
    Abstract: A fuel cell separator (2) of the present invention has a turn portion of a serpentine-shaped reaction gas passage region (101). In the turn portion, a recessed portion (28) is defined by an outer end (28a) of the turn portion and oblique boundaries between the recessed portion (28) and a pair of passage groove group.
    Type: Application
    Filed: December 27, 2006
    Publication date: May 28, 2009
    Inventors: Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Yoshiki Nagao, Shinsuke Takeguchi, Yasuo Takebe, Masaki Nobuoka
  • Patent number: 7521143
    Abstract: A polymer electrolyte fuel cell including a plurality of membrane electrode assemblies and a plurality of conductive separators, wherein the plurality of conductive separators include at least one separator comprising: a fuel gas inlet-side manifold aperture; a fuel gas outlet-side manifold aperture; a gas flow channel for fuel gas formed on an anode-side of the separator; an inlet-side through hole and an outlet-side through hole penetrating the separator which are formed at an inlet-side end and an outlet-side end of the gas flow channel for fuel gas; and an inlet-side connection groove and an outlet-side connection groove for connecting the inlet-side and outlet-side through holes with the fuel gas inlet-side manifold aperture and the fuel gas outlet-side manifold aperture, respectively, which are formed on a cathode-side of the separator.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: April 21, 2009
    Assignee: Panasonic Corporation
    Inventors: Tatsuto Yamazaki, Yoshiaki Yamamoto, Hiroki Kusakabe, Hideo Ohara, Nobuhiro Hase, Shinsuke Takeguchi
  • Patent number: 7491459
    Abstract: The polymer electrolyte fuel cell of the present invention is equipped with a cell having an MEA having a hydrogen ion-conducting polymer electrolyte membrane and an anode and a cathode sandwiching the polymer electrolyte membrane; a platelike anode-side separator positioned on one side of the MEA so that the front surface thereof contacts the anode, with fuel gas passages through which fuel gas flows being formed in the front surface; and a platelike cathode-side separator positioned on the other side of the MEA so that the front surface thereof contacts the cathode, with oxidizing gas passages through which oxidizing gas flows being formed in the front surface; a cell stack in which a plurality of said cells is stacked; and a cooling water flow passage, through which cooling water flows, formed on at least the rear surface of one from among the anode-side separator and the cathode-side separator of at least a prescribed cell in said cell stack; where said fuel gas, oxidizing gas, and cooling water flow thro
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: February 17, 2009
    Assignee: Panasonic Corporation
    Inventors: Hiroki Kusakabe, Kazuhito Hatoh, Hideo Ohara, Shinsuke Takeguchi, Soichi Shibata, Takeshi Tomizawa, Toshihiro Matsumoto, Eiichi Yasumoto
  • Patent number: 7479341
    Abstract: A fuel cell includes a stack of unit cells, each including: a hydrogen-ion conductive polymer electrolyte membrane; an anode and a cathode sandwiching the polymer electrolyte membrane; an anode-side conductive separator plate having a gas flow path for supplying and discharging a fuel gas to and from the anode; and a cathode-side conductive separator plate having a gas flow path for supplying and discharging an oxidant gas to and from the cathode. At least one of the anode-side and cathode-side separator plates has, in one face thereof, a plurality of independent gas flow channels, which constitute the gas flow path. When the fuel cell is operated at low load, the fuel gas or the oxidant gas is supplied to one or more of the plurality of independent gas flow channels, so that the fuel cell is capable of securing sufficient gas velocity.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: January 20, 2009
    Assignee: Panasonic Corporation
    Inventors: Shinsuke Takeguchi, Kazuhito Hatoh, Hideo Ohara, Hisaaki Gyoten
  • Patent number: 7452624
    Abstract: A polymer electrolyte fuel cell of the present invention includes conductive separator plates comprising molded plates of a composition comprising a binder, conductive carbon particles whose average particle diameter is not less than 50 ?m and not more than ? of the thickness of the thinnest portion of the conductive separator plate, and at least one of conductive carbon fine particles and micro-diameter carbon fibers. The separator plates do not require conventional cutting processes for gas flow channels, etc., and can be easily mass produced by injection molding and achieve a reduction in the cost.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: November 18, 2008
    Assignee: Panasonic Corporation
    Inventors: Kazuhito Hatoh, Junji Niikura, Teruhisa Kanbara, Hideo Ohara, Hiroki Kusakabe, Nobuhiro Hase, Shinsuke Takeguchi, Susumu Kobayashi, Masayo Sugou, legal representative, Tatsuto Yamazaki
  • Patent number: 7407723
    Abstract: In a polymer electrolyte fuel cell, at least one of the anode side separator plate and cathode side separator plate is formed with a main surface having a convex shape protruding toward a gas diffusion layer, and a peripheral edge portion surrounding the main surface. An average thickness of the main surface is made to be thicker than an average thickness of the peripheral edge portion. And a difference ?t between the thickest part of the main surface and an average thickness of the peripheral edge portion is made to be 5-30 ?m.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: August 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroki Kusakabe, Kazuhito Hatoh, Toshihiro Matsumoto, Norihiko Kawabata, Yoshiki Nagao, Shinsuke Takeguchi
  • Patent number: 7405019
    Abstract: A highly reliable polymer electrolyte fuel cell includes an anode-side separator plate and a cathode-side separator plate that are provided with an anode-side sealing member and a cathode-side sealing member, respectively. The anode-side and cathode-side sealing members seal the cell in cooperation with a polymer electrolyte membrane at sealing parts where the anode-side and cathode-side sealing members are opposed to each other, thereby preventing gas from leaking out of gas flow channels. One of the anode-side and cathode-side sealing members has a pointed rib that comes in contact with the sealing parts in a linear manner, and the other sealing member comes in contact with the sealing parts surface to surface.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: July 29, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideo Ohara, Hiroki Kusakabe, Kazuhito Hatoh, Nobuhiro Hase, Shinsuke Takeguchi, Takayuki Urata, Soichi Shibata, Takeshi Tomizawa, Eiichi Yasumoto, Hideo Kasahara, Toshihiro Matsumoto
  • Publication number: 20080171250
    Abstract: Even if reaction gas flows into a substantially rectangular anode-side and cathode-side gaps formed between an annular main body portion and a membrane electrode assembly in an anode side and a cathode side of a fuel cell, the reaction gas is prevented from flowing out from an outlet without passing through an electrode to cause degradation of power generation efficiency. At least one of anode-side gasket and cathode-side gasket in the fuel cell is provided with an extra sealing portion connected to an annular main body portion in such a manner that, among two pairs of gap portions opposing to each other in the anode-side gap and the cathode-side gap, the extra sealing portion intersects with one pair of gap portions having a larger pressure gradient of fuel gas and oxidant gas in a direction from an upstream side to a downstream side of a fuel gas flow channel and an oxidant gas flow channel.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 17, 2008
    Inventors: Shinsuke TAKEGUCHI, Kazuhito HATOH, Hiroki KUSAKABE, Toshihiro MATSUMOTO
  • Patent number: 7378169
    Abstract: A decrease in voltage in a polymer electrolyte fuel cell comprising stack of unit cells caused by the temperature difference between the cells located at the ends and the other cells due to a differential in heat dissipation from end plates is prevented by controlling the cooling temperature of the cells closest to the end plates of the fuel cell without affecting the output voltage of the cells in the middle by not including a coolant flow channel in the conductive separator plate between at least one of the end plates and the unit cell located closest to the one of the end plates.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: May 27, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Nobuhiro Hase, Hiroki Kusakabe, Hideo Ohara, Shinsuke Takeguchi, Yoshiaki Yamamoto, Masayo Sugou, legal representative, Tatsuto Yamazaki
  • Publication number: 20080090126
    Abstract: A preservation method of a polymer electrolyte membrane electrode assembly (MEA) which is capable of controlling its degradation that may be thereafter caused by the preservation is provided. A method of preserving a polymer electrolyte membrane electrode assembly including a polymer electrolyte membrane, a pair of catalyst layers disposed on both surfaces of the polymer electrolyte membrane, and a pair of gas diffusion electrodes disposed on outer surfaces of the pair of the catalyst layers, the method comprising the steps of causing the polymer electrolyte membrane electrode assembly to perform a power generation process just after the polymer electrolyte membrane electrode assembly is manufactured or within a time period in which degradation of the polymer electrolyte membrane electrode assembly due to influence of a solvent or impurities does not occur (step S1); and thereafter preserving the polymer electrolyte membrane electrode assembly (step S2).
    Type: Application
    Filed: September 16, 2005
    Publication date: April 17, 2008
    Inventors: Shigeyuki Unoki, Eiichi Yasumoto, Shinsuke Takeguchi, Yoichiro Tsuji
  • Publication number: 20080079186
    Abstract: A polymer electrolyte fuel cell may have a cell stack of a plurality of unit cells. Each of the unit cells includes a hydrogen-ion conductive polymer electrolyte membrane, an anode and a cathode sandwiching the polymer electrolyte membrane, an anode-side separator having a gas flow channel for supplying a fuel gas to the anode, and a cathode-side separator having a gas flow channel for supplying an oxidant gas to the cathode. A pair of current collector plates sandwiches the cell stack, and a pair of end plates clamps the cell stack and the current collector plates under pressure. The current collector plates have a conductive carbon material as a main component, and have a terminal section for connecting a power output cable in the vicinity of an inlet-side manifold for the fuel gas or the oxidant gas.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 3, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Nobuhiro HASE, Kazuhito Hatoh, Hiroki Kusakabe, Hideo Ohara, Susumu Kobayashi, Soichi Shibata, Shinsuke Takeguchi
  • Publication number: 20080014486
    Abstract: The temperature of cooling fluid in an inlet side manifold is increased during power generation by influence of the temperature of heat generation sections of cells. This causes variation in temperature among unit cells in a fuel cell stack, causing flooding and variation in output voltage. The invention provides a fuel cell in which an increase in temperature of cooling fluid in an inlet side manifold is suppressed, and that has an excellent durability and a stable output voltage. The fuel cell has flow paths for cooling fluid in cathode side separator plates and anode side separator plates, the flow paths connecting an inlet side manifold and an outlet side manifold for cooling fluid. Each of the flow paths for cooling fluid includes a first cooling section for cooling a heat generation section, that is, an area corresponding to a cathode or an anode, and a second cooling section located between the first cooling section and the inlet side manifold for cooling fluid.
    Type: Application
    Filed: November 8, 2005
    Publication date: January 17, 2008
    Inventors: Shigeyuki Unoki, Shinsuke Takeguchi, Yasuo Takebe
  • Patent number: 7318974
    Abstract: A polymer electrolyte fuel cell of the present invention includes a hydrogen ion-conductive polymer electrolyte membrane, an anode and a cathode sandwiching the hydrogen ion-conductive polymer electrolyte membrane, an anode-side conductive separator plate having a gas flow channel for supplying a fuel gas to the anode, and a cathode-side conductive separator plate having a gas flow channel for supplying an oxidant gas to the cathode.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideo Ohara, Hiroki Kusakabe, Masayo Sugou, legal representative, Nobuhiro Hase, Shinsuke Takeguchi, Yoshiaki Yamamoto, Toshihiro Matsumoto, Satoru Fujii, Kazuhito Hatoh, Masato Hosaka, Junji Niikura, Kazufumi Nishida, Teruhisa Kanbara, Tatsuto Yamazaki, deceased
  • Patent number: 7294423
    Abstract: A polymer electrolyte fuel cell may include a stack of unit cells that each have a hydrogen-ion conductive polymer electrolyte membrane and an anode and a cathode sandwiching the polymer electrolyte membrane. Separators are provided between each two adjacent unit cells and include channels for supplying fuel and oxidant gas to the anode and the cathode. Anode side and cathode side current collector plates sandwich the stack of unit cells. The anode side current collector plate has a terminal section for a power output coupling and is located closer to an inlet-side manifold than to an outlet-side manifold for the fuel gas. The cathode side current collector plate has a terminal section for a power output coupling and is located closer to an inlet-side manifold than to an outlet-side manifold for the oxidant gas.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: November 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Nobuhiro Hase, Kazuhito Hatoh, Hiroki Kusakabe, Hideo Ohara, Susumu Kobayashi, Soichi Shibata, Shinsuke Takeguchi
  • Publication number: 20070243430
    Abstract: Provided is a method of preserving a PEFC stack, which is capable of controlling degradation of performance of the PEFC stack during a time period that elapses from when the stack is placed in an uninstalled state until it is placed in an installation position and is practically used. Provided is a preservation assembly of the PEFC stack which is capable of sufficiently inhibiting degradation of performance of the PEFC stack particularly during a time period that elapses from when the stack is placed in the uninstalled state until it is placed in the installation position and is practically used.
    Type: Application
    Filed: June 14, 2005
    Publication date: October 18, 2007
    Inventors: Shinichi Arisaka, Yoichiro Tsuji, Eiichi Yasumoto, Kazuhito Hatoh, Shinsuke Takeguchi