Patents by Inventor Shipeng Yan

Shipeng Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10078184
    Abstract: An imprinting method for forming an integrated optical coupling device on wafer level may include: providing a substrate, with a reflection coating disposed thereon; providing an imprinting mold, with void regions shaped according to a designed lens profile; forming a molding material on the substrate; pressing the imprinting mold on the molding material on the substrate; curing the molding material into a cured molding material; removing the imprinting mold; depositing an anti-reflection film on the cured molding material; and dicing to form an integrated optical coupling device.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: September 18, 2018
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Patent number: 9829641
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 28, 2017
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Publication number: 20170023739
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Application
    Filed: September 8, 2016
    Publication date: January 26, 2017
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Publication number: 20170010427
    Abstract: An imprinting method for forming an integrated optical coupling device on wafer level may include: providing a substrate, with a reflection coating disposed thereon; providing an imprinting mold, with void regions shaped according to a designed lens profile; forming a molding material on the substrate; pressing the imprinting mold on the molding material on the substrate; curing the molding material into a cured molding material; removing the imprinting mold; depositing an anti-reflection film on the cured molding material; and dicing to form an integrated optical coupling device.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Patent number: 9465175
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 11, 2016
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Patent number: 9304270
    Abstract: In one aspect, an optical device comprises a monolithic optical module which includes a first total internal reflection (TIR) surface, a second TIR surface adjacent the first TIR surface, and a first optical port aligned with the first internal optical beam dividing interface. An interface between the first TIR surface and the second TIR surface forms a first internal optical beam dividing interface. An exterior surface of the first TIR surface and an exterior surface of the second TIR surface form a generally V-shaped notch on the monolithic optical module. A first optical beam entering the monolithic optical module through the first optical port and incident on the first internal optical beam dividing interface is partially reflected by the first TIR surface to travel in a first direction as a second optical beam and partially reflected by the second TIR surface to travel in a second direction as a third optical beam. The second direction is generally opposite to the first direction.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 5, 2016
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Shipeng Yan, Yanwu Zhang, Dong Pan, Jack Yuan
  • Publication number: 20160025932
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 28, 2016
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Publication number: 20150362683
    Abstract: Various embodiments of a novel method and design for coupling optical signals from a lens array to a fiber array subassembly with locking capability in a pluggable form factor are provided. Optical signals vertically emitted from a vertical-cavity surface-emitting laser (VCSEL) array on a printed circuit board (PCB) are coupled into an optical coupling lens array, which are then coupled into a fiber array subassembly parallel to the PCB. A locking device in a pluggable form factor provides means for mating and locking between the lens array and the fiber array subassembly, thereby achieving good coupling and locking between the fiber array subassembly and lens array.
    Type: Application
    Filed: September 26, 2014
    Publication date: December 17, 2015
    Applicant: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Shipeng Yan, Jack Yuan, Dong Pan
  • Patent number: 8933391
    Abstract: A low-cost monolithic optical module for splitting one or more input optical beams to two or more output optical beams is provided. The one or more input optical beams are reflected by two or more total internal reflection (TIR) surfaces of the monolithic optical module. A light splitting ratio between the two or more output optical beams is predetermined by one or more physical features of the two or more TIR surfaces.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 13, 2015
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Shipeng Yan, Yanwu Zhang, Dong Pan, Jack Yuan
  • Publication number: 20120261559
    Abstract: A low-cost monolithic optical module for splitting one or more input optical beams to two or more output optical beams is provided. The one or more input optical beams are reflected by two or more total internal reflection (TIR) surfaces of the monolithic optical module. A light splitting ratio between the two or more output optical beams is predetermined by one or more physical features of the two or more TIR surfaces.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 18, 2012
    Applicant: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Shipeng Yan, Yanwu Zhang, Dong Pan, Jack Yuan
  • Publication number: 20120193522
    Abstract: In one aspect, an optical device comprises a monolithic optical module which includes a first total internal reflection (TIR) surface, a second TIR surface adjacent the first TIR surface, and a first optical port aligned with the first internal optical beam dividing interface. An interface between the first TIR surface and the second TIR surface forms a first internal optical beam dividing interface. An exterior surface of the first TIR surface and an exterior surface of the second TIR surface form a generally V-shaped notch on the monolithic optical module. A first optical beam entering the monolithic optical module through the first optical port and incident on the first internal optical beam dividing interface is partially reflected by the first TIR surface to travel in a first direction as a second optical beam and partially reflected by the second TIR surface to travel in a second direction as a third optical beam. The second direction is generally opposite to the first direction.
    Type: Application
    Filed: August 16, 2011
    Publication date: August 2, 2012
    Applicant: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Shipeng Yan, Yanwu Zhang, Dong Pan