Patents by Inventor Shiro Hamamoto

Shiro Hamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211401
    Abstract: Provided are: a macromolecular compound for providing an organic semiconductor material exhibiting excellent conversion efficiency; a starting-material compound having high material design freedom; and methods for producing the same. The macromolecular compound according to the present invention comprising a benzobisthiazole structural unit represented by the formula (1): [in the formula (1), T1 and T2 each independently represent an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted by a hydrocarbon group or an organosilyl group, a thiazole ring optionally substituted by a hydrocarbon group or an organosilyl group, or a phenyl group optionally substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; and B1 and B2 each represent a thiophene ring optionally substituted by a hydrocarbon group, a thiazole ring optionally substituted by a hydrocarbon group, or an ethynylene group].
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 19, 2019
    Assignee: TOYOBO CO., LTD.
    Inventors: Atsushi Wakamiya, Kazutake Hagiya, Shiro Hamamoto, Hikaru Tanaka
  • Patent number: 9640689
    Abstract: The invention provides a polyester film for the protection of a back surface of a solar cell which, when applied to a silicon thin film solar cell, exhibits excellent durability even under high-temperature and high-humidity conditions and long term thermal stability. The polyester film (a) contains a polyester, as a main constituent, obtained by polymerization using a polycondensation catalyst containing aluminum and/or its compound as well as a phosphorus compound having an aromatic group in the molecule; (b) has a whiteness degree of 50 or higher; (c) contains 3 to 50% by mass of fine particles with a mean particle diameter of 0.1 to 3 ?m; and (d) has an acid value from not lower than 1 (eq/ton) and not higher than 30 (eq/ton).
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: May 2, 2017
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Shiro Hamamoto, Yoshitomo Ikehata, Katsuya Ito, Jun Inagaki
  • Publication number: 20170069845
    Abstract: Provided are: a macromolecular compound for providing an organic semiconductor material exhibiting excellent conversion efficiency; a starting-material compound having high material design freedom; and methods for producing the same. The macromolecular compound according to the present invention comprising a benzobisthiazole structural unit represented by the formula (1): [in the formula (1), T1 and T2 each independently represent an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted by a hydrocarbon group or an organosilyl group, a thiazole ring optionally substituted by a hydrocarbon group or an organosilyl group, or a phenyl group optionally substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; and B1 and B2 each represent a thiophene ring optionally substituted by a hydrocarbon group, a thiazole ring optionally substituted by a hydrocarbon group, or an ethynylene group].
    Type: Application
    Filed: February 3, 2015
    Publication date: March 9, 2017
    Applicant: TOYOBO CO., LTD.
    Inventors: Atsushi Wakamiya, Kazutake Hagiya, Shiro Hamamoto, Hikaru Tanaka
  • Patent number: 8912427
    Abstract: The present invention provides a polyester film for sealing the backside of solar cell having excellent light reflectivity and durability and good electric insulation. A polyester film for sealing the backside of solar cell having a light reflectance at 550 nm wavelength of 50% or more and containing 3 to 50% by mass of inorganic fine particles, characterized in that acid value of the film is 1 to 30 eq/ton and limiting viscosity of the film is 0.60 to 0.80 dL/g.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 16, 2014
    Assignee: Toyobo Co., Ltd.
    Inventors: Yoshitomo Ikehata, Akira Shimizu, Shiro Hamamoto, Jun Inagaki, Shinji Sawazaki
  • Publication number: 20130112271
    Abstract: The present invention provides a polyester film for sealing the backside of solar cell having excellent light reflectivity and durability and good electric insulation. A polyester film for sealing the backside of solar cell having a light reflectance at 550 nm wavelength of 50% or more and containing 3 to 50% by mass of inorganic fine particles, characterized in that acid value of the film is 1 to 30 eq/ton and limiting viscosity of the film is 0.60 to 0.80 dL/g.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 9, 2013
    Applicant: TOYOBO CO., LTD.
    Inventors: Yoshitomo Ikehata, Akira Shimizu, Shiro Hamamoto, Jun Inagaki, Shinji Sawazaki
  • Publication number: 20120183761
    Abstract: The invention provides a polyester film for the protection of a back surface of a solar cell which, when applied to a silicon thin film solar cell, exhibits excellent durability even under high-temperature and high-humidity conditions and long term thermal stability. The polyester film (a) contains a polyester, as a main constituent, obtained by polymerization using a polycondensation catalyst containing aluminum and/or its compound as well as a phosphorus compound having an aromatic group in the molecule; (b) has a whiteness degree of 50 or higher; (c) contains 3 to 50% by mass of fine particles with a mean particle diameter of 0.1 to 3 ?m; and (d) has an acid value from not lower than 1 (eq/ton) and not higher than 30 (eq/ton).
    Type: Application
    Filed: August 30, 2010
    Publication date: July 19, 2012
    Applicant: TOYO BOSEKI KABUSHIKI KAISHA
    Inventors: Shiro Hamamoto, Yoshitomo Ikehata, Katsuya Ito, Jun Inagaki
  • Patent number: 7649025
    Abstract: A composite ion exchange membrane having a high swelling resistance and being superior in mechanical strength and ion conductivity can be provided by means of an composite ion exchange membrane including an ion exchange resin composition and a support membrane having a continuous pore penetrating the support membrane, wherein the support membrane is one which accepts the ion exchange resin composition within the pore, and wherein the ion exchange resin composition is one which contains an ion exchange resin containing, as a main component, an aromatic polyether and/or its derivative, the aromatic polyether being obtained by mixing a compound having a specific structure, an aromatic dihalogenated compound and a bisphenol compound with a carbonate and/or a bicarbonate of an alkali metal and polymerizing the mixture in an organic solvent.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: January 19, 2010
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Kota Kitamura, Yoshimitsu Sakaguchi, Shigenori Nagahara, Shiro Hamamoto, Naohiko Takimoto, Hideki Sugihara, Satoshi Takase, Tooru Kitagawa, Miyako Noshiro
  • Patent number: 7537852
    Abstract: The present invention provides a composite ion exchange membrane which has high mechanical strength and is suitable for use as a solid polymer electrolyte membrane excellent in ionic conductivity and a method for its production. The invention is achieved by a composite ion exchange membrane including a composite layer comprising a support membrane with continuous voids formed of polybenzazole polymer, the support membrane being impregnated with ion exchange resin, and surface layers formed of ion exchange resin free of support membranes, the surface layers being formed on both surfaces of the composite layer so as to sandwich the composite layer therebetween.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: May 26, 2009
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Shiro Hamamoto, Satoshi Takase, Yoshimitsu Sakaguchi, Shigenori Nagahara, Kota Kitamura, Junko Nakao, Kousuke Sasai
  • Patent number: 7288603
    Abstract: An object of the present invention is to obtain a novel polymeric material capable of forming a solid polymer electrolyte excellent not only in processability, solvent resistance and durability/stability but also in ion conductivity by introducing sulfonic acid group or phosphonic acid group into a polybenzazole compound having excellent properties in view of heat resistance, solvent resistance, mechanical characteristics and the like. Means attaining the object of the present invention is a polybenzazole compound including an aromatic dicarboxylic acid bond unit having sulfonic acid group and/or phosphonic acid group and satisfying either a condition that inherent viscosity measured in concentrated sulfuric acid is in the range of 0.25 to 10 dl/g or a condition that inherent viscosity measured in a methanesulfonic acid solution is in the range of 0.1 to 50 dl/g.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: October 30, 2007
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Yoshimitsu Sakaguchi, Kota Kitamura, Hiroaki Taguchi, Junko Nakao, Shiro Hamamoto, Hiroshi Tachimori, Satoshi Takase
  • Publication number: 20060241192
    Abstract: A composite ion exchange membrane having a high swelling resistance and being superior in mechanical strength and ion conductivity can be provided by means of an composite ion exchange membrane including an ion exchange resin composition and a support membrane having a continuous pore penetrating the support membrane, wherein the support membrane is one which accepts the ion exchange resin composition within the pore, and wherein the ion exchange resin composition is one which contains an ion exchange resin containing, as a main component, an aromatic polyether and/or its derivative, the aromatic polyether being obtained by mixing a compound having a specific structure, an aromatic dihalogenated compound and a bisphenol compound with a carbonate and/or a bicarbonate of an alkali metal and polymerizing the mixture in an organic solvent.
    Type: Application
    Filed: October 16, 2003
    Publication date: October 26, 2006
    Inventors: Kota Kitamura, Yoshimitsu Sakaguchi, Shigenori Nagahara, Shiro Hamamoto, Naohiko Takimoto, Hideki Sugihara, Satoshi Takase, Tooru Kitagawa, Miyako Noshiro
  • Publication number: 20060138042
    Abstract: The present invention is a heat-resistant film comprising at least any one of a polybenzazole, aramid and polyamideimide produced by introducing a thin film made by a roll, slit or press from a polymer solution sandwiched between at least two supports into a coagulating bath and peeling the supports off in the coagulating bath to effect the coagulation, and a composite ion-exchange membrane having a surface layer consisting of an ion-exchange resin excluding a porous film on the both side of a composite layer formed by impregnating said film with the ion-exchange resin. A heat-resistant film having a combination of excellent heat resistance, mechanical strength, smoothness and interlaminar peeling resistance, especially a microporous heat-resistant film, and a composite ion-exchange membrane employing the same which has an excellent ion conductivity are provided.
    Type: Application
    Filed: October 23, 2003
    Publication date: June 29, 2006
    Inventors: Kazutake Okamoto, Hisato Kobayashi, Keizo Kawahara, Shiro Hamamoto, Satoshi Takase, Yoshimitsu Sakaguchi, Cyuji Inukai, Jun Yamada, Daisuke Sakura, Muneatsu Nakamura
  • Publication number: 20050095486
    Abstract: The present invention provides a composite ion exchange membrane which has high mechanical strength and is suitable for use as a solid polymer electrolyte membrane excellent in ionic conductivity and a method for its production. The invention is achieved by a composite ion exchange membrane including a composite layer comprising a support membrane with continuous voids formed of polybenzazole polymer, the support membrane being impregnated with ion exchange resin, and surface layers formed of ion exchange resin free of support membranes, the surface layers being formed on both surfaces of the composite layer so as to sandwich the composite layer therebetween.
    Type: Application
    Filed: February 3, 2003
    Publication date: May 5, 2005
    Inventors: Shiro Hamamoto, Satoshi Takase, Yoshimitsu Sakaguchi, Shigenori Nagahara, Kota Kitamura, Junko Nakao, Kousuke Sasai
  • Patent number: 6821680
    Abstract: A battery including a separator having a satisfactory ammonia trapping property is speculated to exhibit a less self-discharge and a higher capacity-holding rate. The ammonia trapping property is speculated to be increased with an increasing degree of sulfonation of a constitutive polyolefin fiber. However, a highly sulfonated conventional polyolefin has a deteriorated fiber strength and highly sulfonated portions thereof are peeled or eliminated, and the resulting fiber cannot have a significantly high degree of sulfonation. The invention is therefore intended to provide a separator having an improved ammonia trapping property. The invented separator includes a polyolefin resin fiber having large amounts of introduced sulfonic groups. Specifically, the separator is one containing a fiber obtained by sulfonating a polyolefin resin fiber having an intrinsic viscosity number of 0.2 to 1.0 dl/g, one including a fiber obtained by sulfonating a polyolefin resin fiber and having a BET specific surface area of 0.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 23, 2004
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Toshio Tanaka, Hiroki Yamaguchi, Naohiko Takimoto, Masahiro Yamashita, Shiro Hamamoto
  • Publication number: 20040062969
    Abstract: An object of the present invention is to obtain a novel polymeric material capable of forming a solid polymer electrolyte excellent not only in processability, solvent resistance and durability/stability but also in ion conductivity by introducing sulfonic acid group or phosphonic acid group into a polybenzazole compound having excellent properties in view of heat resistance, solvent resistance, mechanical characteristics and the like.
    Type: Application
    Filed: October 28, 2003
    Publication date: April 1, 2004
    Inventors: Yoshimitsu Sakaguchi, Kota Kitamura, Hiroaki Taguchi, Junko Nakao, Shiro Hamamoto, Hiroshi Tachimori, Satoshi Takase
  • Publication number: 20020160260
    Abstract: A battery including a separator having a satisfactory ammonia trapping property is speculated to exhibit a less self-discharge and a higher capacity-holding rate. The ammonia trapping property is speculated to be increased with an increasing degree of sulfonation of a constitutive polyolefin fiber. However, a highly sulfonated conventional polyolefin has a deteriorated fiber strength and highly sulfonated portions thereof are peeled or eliminated, and the resulting fiber cannot have a significantly high degree of sulfonation. The invention is therefore intended to provide a separator having an improved ammonia trapping property. The invented separator includes a polyolefin resin fiber having large amounts of introduced sulfonic groups. Specifically, the separator is one containing a fiber obtained by sulfonating a polyolefin resin fiber having an intrinsic viscosity number of 0.2 to 1.0 dl/g, one including a fiber obtained by sulfonating a polyolefin resin fiber and having a BET specific surface area of 0.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 31, 2002
    Inventors: Toshio Tanaka, Hiroki Yamaguchi, Naohiko Takimoto, Masahiro Yamashita, Shiro Hamamoto
  • Publication number: 20020155347
    Abstract: A battery including a separator having a satisfactory ammonia trapping property is speculated to exhibit a less self-discharge and a higher capacity-holding rate. The ammonia trapping property is speculated to be increased with an increasing degree of sulfonation of a constitutive polyolefin fiber. However, a highly sulfonated conventional polyolefin has a deteriorated fiber strength and highly sulfonated portions thereof are peeled or eliminated, and the resulting fiber cannot have a significantly high degree of sulfonation. The invention is therefore intended to provide a separator having an improved ammonia trapping property. The invented separator includes a polyolefin resin fiber having large amounts of introduced sulfonic groups. Specifically, the separator is one containing a fiber obtained by sulfonating a polyolefin resin fiber having an intrinsic viscosity number of 0.2 to 1.0 dl/g, one including a fiber obtained by sulfonating a polyolefin resin fiber and having a BET specific surface area of 0.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 24, 2002
    Inventors: Toshio Tanaka, Hiroki Yamaguchi, Naohiko Takimoto, Masahiro Yamashita, Shiro Hamamoto
  • Patent number: 6420072
    Abstract: This invention includes a polyelectrolytic gel comprising a polymer component and a nonaqueous solvent, characterized in that the polymer component is a crosslinked polymer having nitrogen-containing cationic functional group or a mixture of a non-crosslinked polymer having nitrogen-containing cationic functional group and a crosslinked polymer free of nitrogen-containing cationic functional group, the polymer component being swollen with the nonaqueous solvent containing an electrolyte dissolved therein. The electrolytic gel of the invention is excellent in heat resistance and durability and also in electroconductivity, especially ion conductivity.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: July 16, 2002
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Kunio Maruyama, Koji Tanaka, Shiro Hamamoto
  • Patent number: 6403265
    Abstract: A battery including a separator having a satisfactory ammonia trapping property is speculated to exhibit a less self-discharge and a higher capacity-holding rate. The ammonia trapping property is speculated to be increased with an increasing degree of sulfonation of a constitutive polyolefin fiber. However, a highly sulfonated conventional polyolefin has a deteriorated fiber strength and highly sulfonated portions thereof are peeled or eliminated, and the resulting fiber cannot have a significantly high degree of sulfonation. The invention is therefore intended to provide a separator having an improved ammonia trapping property. The invented separator includes a polyolefin resin fiber having large amounts of introduced sulfonic groups. Specifically, the separator is one containing a fiber obtained by sulfonating a polyolefin resin fiber having an intrinsic viscosity number of 0.2 to 1.0 dl/g, one including a fiber obtained by sulfonating a polyolefin resin fiber and having a BET specific surface area of 0.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Toshio Tanaka, Hiroki Yamaguchi, Naohiko Takimoto, Masahiro Yamashita, Shiro Hamamoto