Patents by Inventor Shiro Yamasaki

Shiro Yamasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9017479
    Abstract: The apparatus has a crucible for storing a solution; an inner container for storing a crucible; a heating container for storing the inner container, the heating container including heating elements, a container body provided with the heating elements and a lid combined with the container body; and a pressure vessel for storing the heating container and for charging an atmosphere comprising at least nitrogen gas. The lid also has a fitting surface to the container body that is inclined to a horizontal plane.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: April 28, 2015
    Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 8765313
    Abstract: A fuel cell system includes a reformer that generates reformed gas using reforming fuel; a fuel cell that generates electric power using the reformed gas generated by the reformer; and a control device. The control device includes a plurality of different stop control modes for stopping operation of the fuel cell system, and selects a specific stop control mode among the plurality of stop control modes, according to the cause of a malfunction of the fuel cell system.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Kurita, Kazumasa Takada, Shiro Yamasaki, Norihiko Toyonaga
  • Patent number: 8657955
    Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: February 25, 2014
    Assignees: NGK Insulators, Ltd, Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 8231729
    Abstract: It is disclosed an apparatus for growing a nitride single crystal using a flux containing an easily oxidizable substance. The apparatus has a crucible for storing the flux; a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen gas; furnace materials disposed within the pressure vessel and out of the crucible; heaters attached to the furnace material; and alkali-resistant and heat-resistant metallic layers covering the furnace material.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 31, 2012
    Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 7842133
    Abstract: In a method of growing a single crystal by melting a raw material within a vessel under a nitrogenous and non-oxidizing atmosphere, the vessel is oscillated and the melted raw material is contacted with an agitation medium made of a solid unreactive with the melted raw material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: November 30, 2010
    Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki, Koji Hirata
  • Publication number: 20090293805
    Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 3, 2009
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Publication number: 20090000538
    Abstract: In a method of growing a single crystal by melting a raw material within a vessel under a nitrogenous and non-oxidizing atmosphere, the vessel is oscillated and the melted raw material is contacted with an agitation medium made of a solid unreactive with the melted raw material.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 1, 2009
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki, Koji Hirata
  • Publication number: 20090000542
    Abstract: It is disclosed an apparatus for growing a nitride single crystal using a flux containing an easily oxidizable substance. The apparatus has a crucible for storing the flux; a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen gas; furnace materials disposed within the pressure vessel and out of the crucible; heaters attached to the furnace material; and alkali-resistant and heat-resistant metallic layers covering the furnace material.
    Type: Application
    Filed: August 15, 2008
    Publication date: January 1, 2009
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Publication number: 20080282971
    Abstract: The apparatus has a crucible for storing a solution; an inner container 16 for storing a crucible; a heating container 31 for storing the inner container 16, the heating container 31 including heating elements 14, a container body 13 provided with the heating elements 14 and a lid 12 combined with the container body 13; and a pressure vessel 30 for storing the heating container 31 and for charging an atmosphere comprising at least nitrogen gas. The lid 12 has a fitting surface 12b to the container body inclined to a horizontal plane P.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 20, 2008
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Publication number: 20080081231
    Abstract: A fuel cell system includes a reformer that generates reformed gas using reforming fuel; a fuel cell that generates electric power using the reformed gas generated by the reformer; and a control device. The control device includes a plurality of different stop control modes for stopping operation of the fuel cell system, and selects a specific stop control mode among the plurality of stop control modes, according to the cause of a malfunction of the fuel cell system.
    Type: Application
    Filed: September 20, 2007
    Publication date: April 3, 2008
    Inventors: Kenji Kurita, Kazumasa Takada, Shiro Yamasaki, Norihiko Toyonaga
  • Patent number: 6962828
    Abstract: A novel light-emitting device includes a saphire substrate with a light-emitting layer comprising InXGa1?XN, where the critical value of the indium mole fraction X is determined by a newly derived relationship between the indium mole fraction X and the wavelength ? of emitted light.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: November 8, 2005
    Assignees: Toyoda Gosei Co., Ltd.
    Inventors: Norikatsu Koide, Masayoshi Koike, Shiro Yamasaki, Isamu Akasaki, Hiroshi Amano
  • Patent number: 6821800
    Abstract: In a method of manufacturing a semiconductor light-emitting device involving the steps of: forming a first semiconductor layer; forming a light-emitting layer of superlattice structure by laminating a barrier layer being made of InY1Ga1-Y1N (Y1≧0) and a quantum well layer being made of InY2Ga1-Y2N (Y2>Y1 and Y2>0) on the first semiconductor layer; and forming a second semiconductor layer on the light-emitting layer, an uppermost barrier layer, which will become an uppermost layer of the light-emitting layer, is made thicker than the other barrier layers. Further, at the time of forming the second semiconductor layer, an upper surface of such uppermost barrier layer is caused to disappear so that the thickness of the uppermost barrier layer becomes substantially equal to those of the other barrier layers.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 23, 2004
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Norikatsu Koide, Shinya Asami, Junichi Umezaki, Masayoshi Koike, Shiro Yamasaki, Seiji Nagai
  • Patent number: 6680957
    Abstract: A semiconductor laser 101 comprises a sapphire substrate 1, an AlN buffer layer 2, Si-doped GaN n-layer 3, Si-doped Al0.1Ga0.9N n-cladding layer 4, Si-doped GaN n-guide layer 5, an active layer 6 having multiple quantum well (MQW) structure in which about 35 Å in thickness of GaN barrier layer 62 and about 35 Å in thickness of Ga0.95In0.05N well layer 61 are laminated alternately, Mg-doped GaN p-guide layer 7, Mg-doped Al0.1Ga0.9N p-cladding layer 8, and Mg-doped GaN p-contact layer 9 are formed successively thereon. A ridged hole injection part B which contacts to a ridged resonator part A is formed to have the same width as the width w of an Ni electrode 10. Holes transmitted from the Ni electrode 10 are injected to the active layer 6 with high current density, and electric current threshold for laser oscillation can be decreased. Electric current threshold can be improved more effectively by forming also the p-guide layer 7 to have the same width as the width w of the Ni electrode 10.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: January 20, 2004
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Shiro Yamasaki, Yuta Tezen, Seiji Nagai, Akira Kojima, Toshio Hiramatsu
  • Patent number: 6639258
    Abstract: Aluminum gallium nitride (AlxGa1−xN, 0<x<1) is employed as a substrate of a Group III nitride compound semiconductor device. In light-emitting diodes and laser diodes employing the substrate, crack generation is prevented, even when a thick cladding layer formed of aluminum gallium nitride (AlxGa1−xN, 0<x<1) is stacked on the substrate. The smaller the difference in Al compositional proportion between the substrate and an aluminum gallium nitride (AlxGa1−xN, 0<x<1) layer, the less likely the occurrence of crack generation.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: October 28, 2003
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Shiro Yamasaki
  • Patent number: 6617061
    Abstract: A clad layer is provided as a multilayer structure made of an alternate laminate of 20 layers of Al0.2Ga0.8N 50 nm thick and 20 layers of Ga0.99In0.01N 20 nm thick. The clad layer about 1.4 &mgr;m thick has a low elastic constant because the clad layer is provided as a multilayer structure. In a laser diode, it is useful that another layer such as a guide layer requiring a band gap of aluminum gallium nitride (AlxGa1-xN 0<x<1) is provided as a multilayer structure made of aluminum gallium nitride (AlxGa1-xN 0<x<1) and gallium indium nitride (GayGa1-yN 0<y<1).
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: September 9, 2003
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Shiro Yamasaki
  • Publication number: 20030124789
    Abstract: In a method of manufacturing a semiconductor light-emitting device involving the steps of: forming a first semiconductor layer; forming a light-emitting layer of superlattice structure by laminating a barrier layer being made of InY1Ga1−Y1N (Y1≧0) and a quantum well layer being made of InY2Ga1−Y2N (Y2>Y1 and Y2>0) on the first semiconductor layer; and forming a second semiconductor layer on the light-emitting layer, an uppermost barrier layer, which will become an uppermost layer of the light-emitting layer, is made thicker than the other barrier layers. Further, at the time of forming the second semiconductor layer, an upper surface of such uppermost barrier layer is caused to disappear so that the thickness of the uppermost barrier layer becomes substantially equal to those of the other barrier layers.
    Type: Application
    Filed: December 23, 2002
    Publication date: July 3, 2003
    Applicant: Toyoda Gosei Co., Ltd.
    Inventors: Norikatsu Koide, Shinya Asami, Junichi Umezaki, Masayoshi Koike, Shiro Yamasaki, Seiji Nagai
  • Patent number: 6552376
    Abstract: Aluminum gallium nitride (AlxGa1−xN, 0<x<1) is employed as a substrate of a Group III nitride compound semiconductor device. In light-emitting diodes and laser diodes employing the substrate, crack generation is prevented, even when a thick cladding layer formed of aluminum gallium nitride (AlxGa1−xN, 0<x<1) is stacked on the substrate. The smaller the difference in Al compositional proportion between the substrate and an aluminum gallium nitride (AlxGa1−xN, 0<x<1) layer, the less likely the occurrence of crack generation.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: April 22, 2003
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Shiro Yamasaki
  • Patent number: 6541293
    Abstract: In a method of manufacturing a semiconductor light-emitting device involving the steps of: forming a first semiconductor layer; forming a light-emitting layer of superlattice structure by laminating a barrier layer being made of InY1Ga1−Y1N (Y1≧0) and a quantum well layer being made of InY2Ga1−Y2N (Y2>Y1 and Y2 >0) on the first semiconductor layer; and forming a second semiconductor layer on the light-emitting layer, an uppermost barrier layer, which will become an uppermost layer of the light-emitting layer, is made thicker than the other barrier layers. Further, at the time of forming the second semiconductor layer, an upper surface of such uppermost barrier layer is caused to disappear so that the thickness of the uppermost barrier layer becomes substantially equal to those of the other barrier layers.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: April 1, 2003
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Norikatsu Koide, Shinya Asami, Junichi Umezaki, Masayoshi Koike, Shiro Yamasaki, Seiji Nagai
  • Patent number: 6541798
    Abstract: A clad layer is provided as a multilayer structure made of an alternate laminate of 20 layers of Al0.2Ga0.8N 50 nm thick and 20 layers of Ga0.99In0.01N 20 nm thick. The clad layer about 1.4 &mgr;m thick has a low elastic constant because the clad layer is provided as a multilayer structure. In a laser diode, it is useful that another layer such as a guide layer requiring a band gap of aluminum gallium nitride (AlxGa1−xN 0<x<1) is provided as a multilayer structure made of aluminum gallium nitride (AlxGa1−xN 0<x<1) and gallium indium nitride (GayGa1−yN 0<y<1).
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: April 1, 2003
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Shiro Yamasaki
  • Publication number: 20030022028
    Abstract: A clad layer is provided as a multilayer structure made of an alternate laminate of 20 layers of Al0.2Ga0.8N 50 nm thick and 20 layers of Ga0.99In0.01N 20 nm thick. The clad layer about 1.4 &mgr;m thick has a low elastic constant because the clad layer is provided as a multilayer structure. In a laser diode, it is useful that another layer such as a guide layer requiring a band gap of aluminum gallium nitride (AlxGa1-xN 0<x<1) is provided as a multilayer structure made of aluminum gallium nitride (AlxGa1-xN 0<x<1) and gallium indium nitride (GayGa1-yN 0<y<1).
    Type: Application
    Filed: September 24, 2002
    Publication date: January 30, 2003
    Applicant: TOYODA GOSEI CO., LTD.
    Inventors: Masayoshi Koike, Shiro Yamasaki