Patents by Inventor Shitong Zha

Shitong Zha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220034554
    Abstract: An apparatus includes a first expander, a first load, a first work recovery compressor, a valve, and a first compressor. The first expander expands a refrigerant. The first load uses the refrigerant to cool a space proximate the first load. The work recovery compressor compresses the refrigerant from the first load and is driven by the first expander. The valve reduces the pressure of the refrigerant from the work recovery compressor. The first compressor compresses the refrigerant from the valve.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Xi Sun, Shitong Zha
  • Publication number: 20220026115
    Abstract: A cooling system implements various processes to improve efficiency in high ambient temperatures. First, the system can flood one or more low side heat exchangers in the system. Second, the system can direct a portion of vapor refrigerant from a low side heat exchanger to a flash tank rather than to a compressor. Third, the system can transfer heat from refrigerant at a compressor suction to refrigerant at the discharge of a high side heat exchanger.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 27, 2022
    Inventor: Shitong Zha
  • Publication number: 20210404721
    Abstract: A cooling system is designed to generally allow for one or more compressors to be bypassed when ambient temperatures are low. The system includes a bypass line and valve that opens when ambient temperatures are low and/or when the pressure of the refrigerant in the system is low. In this manner, the refrigerant can flow through the bypass line instead of through one or more compressors. These compressors may then be shut off. To supply any needed pressure to cycle the refrigerant, the system may include a pump that turns on when the bypass line is open. When ambient temperatures are extremely low, thermosiphon may be used to cycle the refrigerant.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventor: Shitong Zha
  • Publication number: 20210404717
    Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. As oil collects in the P-traps, the refrigerant begins to push the oil upwards until the oil reaches the high side heat exchanger. Multiple piping of different sizes may be used depending on a discharge pressure of the compressor. When the discharge pressure is higher, a larger piping may be used direct the oil and refrigerant to the high side heat exchanger.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventor: Shitong Zha
  • Patent number: 11209199
    Abstract: An apparatus includes a high side heat exchanger, a flash tank, a load, a compressor, and a heat exchanger. The high side heat exchanger removes heat from a refrigerant. The flash tank stores the refrigerant from the high side heat exchanger and to discharge a flash gas. The load uses the refrigerant from the cool a space proximate the load. The compressor compresses the refrigerant from the load. The heat exchanger transfers heat from the refrigerant from the compressor to the flash gas before the refrigerant from the compressor reaches the high side heat exchanger. The heat exchanger directs the flash gas to the compressor after heat from the refrigerant from the compressor is transferred to the flash gas and directs the refrigerant from the compressor to the high side heat exchanger after heat from the refrigerant from the compressor is transferred to the flash gas.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: December 28, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventors: Shitong Zha, Xi Sun
  • Patent number: 11193699
    Abstract: An apparatus includes a high side heat exchanger, a flash tank, a first load, a first oil separator, and a first compressor. The high side heat exchanger removes heat from a refrigerant. The flash tank stores the refrigerant. The first load uses the refrigerant to cool a first space proximate the first load. During a first mode of operation, the first oil separator separates an oil from the refrigerant from the first load and directs the refrigerant to an ejector. The ejector directs the refrigerant from the high side heat exchanger and the refrigerant form the first oil separator to the flash tank. The flash tank directs the refrigerant from the first oil separator to the first compressor. The first compressor compresses the refrigerant from the flash tank. During a second mode of operation, the first oil separator directs the oil separated from the refrigerant to the first compressor.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: December 7, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventors: Xi Sun, Shitong Zha
  • Patent number: 11187437
    Abstract: An apparatus includes a first expander, a flash tank, a first load, a first work recovery compressor, a valve, and a first compressor. The first expander expands a refrigerant. The flash tank stores a refrigerant from the expander. The first load uses the refrigerant from the flash tank to cool a space proximate the first load. The work recovery compressor compresses the refrigerant from the first load and is driven by the first expander. The valve reduces the pressure of the refrigerant from the work recovery compressor below a threshold. The first compressor compresses the refrigerant from the valve.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: November 30, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventors: Xi Sun, Shitong Zha
  • Patent number: 11187445
    Abstract: A system includes a flash tank, a first load, a second load, a first compressor, a second compressor, a first valve, and a second valve. The flash tank stores a refrigerant. The first and second loads use the refrigerant to cool first and second spaces. The first compressor compresses the refrigerant from the first load during a first mode of operation and a flash gas from the flash tank during a second mode of operation. The second compressor compresses a mixture of the refrigerant from the first and second loads during the first mode of operation. The first valve directs the flash gas from the flash tank to the first compressor during the second mode of operation. The second valve directs the compressed flash gas from the first compressor to the first load during the second mode of operation to defrost the first load.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: November 30, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventors: Mike Hollister, Shitong Zha
  • Publication number: 20210333030
    Abstract: An apparatus includes a high side heat exchanger, a heat exchanger, a flash tank, a first expansion valve, a second expansion valve, a load, a first compressor, and a second compressor. During a first mode of operation, the second expansion valve directs refrigerant from the flash tank to the load. The refrigerant from the load bypasses the first compressor. The heat exchanger transfers heat from the refrigerant from the high side heat exchanger to the refrigerant from the load. The second compressor compresses the refrigerant from the heat exchanger. During a second mode of operation, the first expansion valve directs refrigerant from the flash tank to the load. The first compressor compresses the refrigerant from the load and the second compressor compresses the refrigerant from the first compressor before the refrigerant from the first compressor reaches the high side heat exchanger.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Inventor: Shitong Zha
  • Patent number: 11149997
    Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. As oil collects in the P-traps, the refrigerant begins to push the oil upwards until the oil reaches the high side heat exchanger. Multiple piping of different sizes may be used depending on a discharge pressure of the compressor. When the discharge pressure is higher, a larger piping may be used direct the oil and refrigerant to the high side heat exchanger.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: October 19, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventor: Shitong Zha
  • Patent number: 11150001
    Abstract: A cooling system is designed to generally allow for one or more compressors to be bypassed when ambient temperatures are low. The system includes a bypass line and valve that opens when ambient temperatures are low and/or when the pressure of the refrigerant in the system is low. In this manner, the refrigerant can flow through the bypass line instead of through one or more compressors. These compressors may then be shut off. To supply any needed pressure to cycle the refrigerant, the system may include a pump that turns on when the bypass line is open. When ambient temperatures are extremely low, thermosiphon may be used to cycle the refrigerant.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 19, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventor: Shitong Zha
  • Patent number: 11118817
    Abstract: An apparatus includes a high side heat exchanger, a flash tank, a first load, a first compressor, an auxiliary cooling system, and a first check valve. The high side heat exchanger removes heat from a refrigerant. The flash tank stores the refrigerant from the high side heat exchanger. The first load uses the refrigerant to remove heat from a space proximate the first load. The first compressor compresses the refrigerant from the first load. The auxiliary cooling system removes heat from the refrigerant stored in the flash tank during a power outage. The first check valve directs the refrigerant between the first load and the first compressor back to the flash tank when the pressure of the refrigerant between the first load and the first compressor exceeds a threshold during the power outage.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: September 14, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventor: Shitong Zha
  • Publication number: 20210270502
    Abstract: A cooling system drains oil from low side heat exchangers to vessels and then uses compressed refrigerant to push the oil in the vessels back towards a compressor. Generally, the cooling system operates in three different modes of operation: a normal mode, an oil drain mode, and an oil return mode. During the normal mode, a primary refrigerant is cycled to cool one or more secondary refrigerants. As the primary refrigerant is cycled, oil from a compressor may mix with the primary refrigerant and become stuck in a low side heat exchanger. During the oil drain mode, the oil in the low side heat exchanger is allowed to drain into a vessel. During the oil return mode, compressed refrigerant is directed to the vessel to push the oil in the vessel back towards a compressor.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Shitong Zha, Augusto Zimmermann
  • Publication number: 20210270505
    Abstract: A cooling system drains oil from low side heat exchangers to vessels and then uses compressed refrigerant to push the oil in the vessels back towards a compressor. Generally, the cooling system operates in three different modes of operation: a normal mode, an oil drain mode, and an oil return mode. During the normal mode, a primary refrigerant is cycled to cool one or more secondary refrigerants. As the primary refrigerant is cycled, oil from a compressor may mix with the primary refrigerant and become stuck in a low side heat exchanger. During the oil drain mode, the oil in the low side heat exchanger is allowed to drain into a vessel. During the oil return mode, compressed refrigerant is directed to the vessel to push the oil in the vessel back towards a compressor.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventor: Shitong Zha
  • Publication number: 20210270503
    Abstract: A cooling system drains oil from low side heat exchangers to vessels and then uses compressed refrigerant to push the oil in the vessels back towards a compressor. Generally, the cooling system operates in three different modes of operation: a normal mode, an oil drain mode, and an oil return mode. During the normal mode, a primary refrigerant is cycled to cool one or more secondary refrigerants. As the primary refrigerant is cycled, oil from a compressor may mix with the primary refrigerant and become stuck in a low side heat exchanger. During the oil drain mode, the oil in the low side heat exchanger is allowed to drain into a vessel. During the oil return mode, compressed refrigerant is directed to the vessel to push the oil in the vessel back towards a compressor.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Shitong Zha, Augusto Zimmermann
  • Patent number: 11085681
    Abstract: An apparatus includes a high side heat exchanger, a heat exchanger, a flash tank, a first expansion valve, a second expansion valve, a load, a first compressor, and a second compressor. During a first mode of operation, the second expansion valve directs refrigerant from the flash tank to the load. The refrigerant from the load bypasses the first compressor. The heat exchanger transfers heat from the refrigerant from the high side heat exchanger to the refrigerant from the load. The second compressor compresses the refrigerant from the heat exchanger. During a second mode of operation, the first expansion valve directs refrigerant from the flash tank to the load. The first compressor compresses the refrigerant from the load and the second compressor compresses the refrigerant from the first compressor before the refrigerant from the first compressor reaches the high side heat exchanger.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 10, 2021
    Assignee: Heatcraft Refrigeration Products LLC
    Inventor: Shitong Zha
  • Publication number: 20210239373
    Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. T-connections are coupled to the P-traps to allow the oil to drain out of the P-traps. The oil may then be collected and returned to the compressor.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 5, 2021
    Inventors: Nicole Z. Martin, Shitong Zha
  • Publication number: 20210239374
    Abstract: A cooling system uses P-traps to address the oil return issues that result from a vertical separation between the compressor and the high side heat exchanger. Generally, the vertical piping that carries the refrigerant from the compressor to the high side heat exchanger includes P-traps installed at various heights to capture oil in the refrigerant and to prevent that oil from flowing back to the compressor. As oil collects in the P-traps, the refrigerant begins to push the oil upwards until the oil reaches the high side heat exchanger. Multiple piping of different sizes may be used depending on a discharge pressure of the compressor. When the discharge pressure is higher, a larger piping may be used direct the oil and refrigerant to the high side heat exchanger.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 5, 2021
    Inventor: Shitong Zha
  • Publication number: 20210231356
    Abstract: An apparatus includes a flash tank that stores a refrigerant, a first load that uses the refrigerant to cool a first space, second and third loads, first and second compressors, and a high side heat exchanger configured to remove heat from the refrigerant. During a first mode of operation: the second load uses the refrigerant to cool a second space, the third load uses the refrigerant to cool a third space, the second compressor compresses the refrigerant from the second and third loads, and the first compressor compresses the refrigerant from the first load and the second compressor. During a second mode of operation, the second compressor compresses the refrigerant from the second load and directs the compressed refrigerant to the third load to defrost the third load.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Inventors: Michael Hollister, Shitong Zha
  • Publication number: 20210215410
    Abstract: A cooling system partially floods the low temperature low side heat exchangers (e.g., freezers) in the system. An accumulator is positioned between the low temperature low side heat exchangers and the low temperature compressor. The accumulator collects the refrigerant (both liquid and vapor) from the flooded low temperature low side heat exchangers. Refrigerant discharged by the low temperature compressor is fed through the accumulator so that heat can be transferred to the refrigerant collected in the accumulator. As a result, the temperature of the refrigerant discharged by the low temperature compressor drops before that refrigerant reaches the medium temperature compressor.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Shitong Zha, Douglas Cole