Patents by Inventor Shizhi Qian

Shizhi Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220289636
    Abstract: A method and apparatus for forming variable density ceramic structures, where the method includes: obtaining a ceramic powder having an ultrafine particle size; mixing the ceramic powder into a suspension fluid thus forming a ceramic suspension; providing a mold configured to retain the ceramic suspension; providing a plurality of electrodes about the mold; applying an alternating voltage to the electrodes thus forming alternating electric currents through the suspension thus causing accumulation of ceramic particles on at least one of the electrodes; reducing the temperature of the suspension thus inducing the formation of ice crystals therein necessary for ice-templating; freeze drying the frozen suspension into a porous state; and sintering the ceramic particles into a solid architecture retaining a common final structure with the ceramic particles in the porous state.
    Type: Application
    Filed: February 3, 2022
    Publication date: September 15, 2022
    Inventors: Dipankar Ghosh, Sashanka Akurati, Shizhi Qian
  • Publication number: 20150211972
    Abstract: A shear stress sensor for use within a substrate exposed to a fluid flow. The sensor comprising a cavity defined within the substrate; electrolyte fluid within the cavity; and an amperometric system further comprising oppositely disposed first and second electrodes within the cavity for measuring current flow between the first and second electrodes, wherein fluid motion within the cavity is responsive to shear stress and measured current flow is responsive to the fluid motion.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 30, 2015
    Inventors: Chistopher Hughes, Kareem Ahmed, Shizhi Qian
  • Patent number: 8801911
    Abstract: Provided is a device and method of manipulating particles. The device includes: a channel for accommodating an electrolyte solution including particles to be manipulated; an anode and cathode for imposing a direct current (DC) electric field on the channel; metal strip(s) attached to an inner wall of the channel and resulting in induced-charge electroosmosis near a surface of the channel; a DC power supply unit for supplying a DC voltage to the anode and the cathode of the channel; control electrodes on both sides of the metal strip(s) to locally tune the induced-charge electroosmosis on the metal strip(s) regardless of the global electric field across the channel; and a DC power supply unit for supplying a DC voltage to the control electrodes.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Industry-Academic Cooperation Foundation, Yeungnam University
    Inventors: Sang-Woo Joo, Ashutosh Sharma, Shizhi Qian
  • Patent number: 8518227
    Abstract: A nanoparticle translocation device includes a first reservoir having a first reservoir electrode, a second reservoir having a second reservoir electrode, and at least one nanopore providing fluid communication between the first and second reservoirs. The device also includes one or more inner electrode portions on an inner wall of the nanopore and one or more outer electrode portions disposed on an outer wall of the nanopore. The device further includes at least one DC voltage supply for selectively applying a DC voltage to each of the first reservoir electrode, the second reservoir electrode, and the outer electrode layer, where the inner electrode portions, the outer electrode portions, and the nanopore are in a substantially coaxial arrangement.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 27, 2013
    Assignee: Old Dominion University Research Foundation
    Inventors: Shizhi Qian, Ali Beskok
  • Publication number: 20130089929
    Abstract: A microdevice for fusing cells, the microdevice including: a substrate; a first electrode array including a plurality of first electrodes, and disposed on the substrate; a microwell array including a plurality of microwells formed respectively at locations corresponding to the plurality of first electrodes, and disposed on the first electrode array; a second electrode disposed above the plurality of microwells, and including a microchannel having a predetermined height; inlet and outlet holes mutually spaced apart from the microchannel; and a power supply unit applying voltage to the plurality of first electrodes and the second electrode. Accordingly, a cell trapped in the microwell and a cell disposed on the microwell are aligned in a line between the first and second electrodes, and thus the two cells having different traits are smoothly fused in a one-to-one manner when an electric shock is applied to the two cells.
    Type: Application
    Filed: October 27, 2011
    Publication date: April 11, 2013
    Inventors: Sang-Woo Joo, Shizhi Qian, Ning Hu
  • Publication number: 20130089931
    Abstract: A microdevice for fusing cells including: a membrane with a plurality of pores having a diameter smaller than the smallest diameter among the first kind of cells and second kind of cells; a first chamber where the first cell is located and a second chamber where the second cell is located, wherein the membrane is disposed therebetween; a first electrode combined to the first chamber; a second electrode combined to the second chamber; and a power generator applying a voltage to the first and second electrodes. Accordingly, the first and second cells across the membrane may be arranged in a one-to-one manner between the first and second electrodes, and thus the first and second cells having different traits may be smoothly fused in a one-to-one manner when electric signals are sequentially applied thereto.
    Type: Application
    Filed: October 27, 2011
    Publication date: April 11, 2013
    Inventors: Sang-Woo JOO, Shizhi Qian, Ning Hu
  • Publication number: 20130089930
    Abstract: A microdevice for fusing cells including: a microchannel layer including a main microchannel and a plurality of sub-microchannels branched from one end of the main microchannel; a plurality of first electrodes formed on one side of the main microchannel; a plurality of second electrodes formed on the other side of the main microchannel and each second electrode facing the each of the first electrodes; a thin film disposed on the microchannel layer and covering the main microchannel; an upper cover including an air inflow passage for connecting a top of the thin film and the outside of the microdevice; and a power supply unit for applying voltage to the plurality of first and second electrodes.
    Type: Application
    Filed: October 27, 2011
    Publication date: April 11, 2013
    Inventors: Sang-Woo Joo, Shizhi Qian, Ning Hu
  • Publication number: 20130081945
    Abstract: Provided is a device and method of manipulating particles. The device includes: a channel for accommodating an electrolyte solution including particles to be manipulated; an anode and cathode for imposing a direct current (DC) electric field on the channel; metal strip(s) attached to an inner wall of the channel and resulting in induced-charge electroosmosis near a surface of the channel; a DC power supply unit for supplying a DC voltage to the anode and the cathode of the channel; control electrodes on both sides of the metal strip(s) to locally tune the induced-charge electroosmosis on the metal strip(s) regardless of the global electric field across the channel; and a DC power supply unit for supplying a DC voltage to the control electrodes.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Sang-Woo JOO, Ashutosh SHARMA, Shizhi Qian
  • Publication number: 20120097539
    Abstract: A nanoparticle translocation device includes a first reservoir having a first reservoir electrode, a second reservoir having a second reservoir electrode, and at least one nanopore providing fluid communication between the first and second reservoirs. The device also includes one or more inner electrode portions on an inner wall of the nanopore and one or more outer electrode portions disposed on an outer wall of the nanopore. The device further includes at least one DC voltage supply for selectively applying a DC voltage to each of the first reservoir electrode, the second reservoir electrode, and the outer electrode layer, where the inner electrode portions, the outer electrode portions, and the nanopore are in a substantially coaxial arrangement.
    Type: Application
    Filed: September 15, 2011
    Publication date: April 26, 2012
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shizhi Qian, Ali Beskok