Patents by Inventor Shlomo Selim Rakib

Shlomo Selim Rakib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230138923
    Abstract: Computerized wireless transmitter/receiver system that automatically uses combinations of various methods, including transmitting data symbols by weighing or modulating a family of time shifted and frequency shifted waveforms bursts, pilot symbol methods, error detection methods, MIMO methods, and other methods, to automatically determine the structure of a data channel, and automatically compensate for signal distortions caused by various structural aspects of the data channel, as well as changes in channel structure. Often the data channel is a two or three dimensional space in which various wireless transmitters, receivers and signal reflectors are moving. The invention's modulation methods detect locations and speeds of various reflectors and other channel impairments. Error detection schemes, variation of modulation methods, and MIMO techniques further detect and compensate for impairments.
    Type: Application
    Filed: October 6, 2022
    Publication date: May 4, 2023
    Inventors: Shlomo Selim RAKIB, Ronny HADANI
  • Publication number: 20230095995
    Abstract: An airborne RF-head platform system and method. Here, much of the computational burden of transmitting and receiving wireless RF waveforms is shifted from the airborne platform to a ground baseband unit (BBU). The airborne platform, which will often be a high altitude balloon or drone type platform, generally comprises one or more remote radio heads, configured with antennas, A/D and D/A converters, frequency converters, RF amplifiers, and the like. The airborne platform communicates with the ground baseband units either directly via a laser communications link, or indirectly through another airborne relay platform. The airborne RF-head communicates via various wireless protocols to various user equipment such as smartphones by using the BBU and the laser communications link to precisely control the function of the airborne A/D and D/A converters and antennas. This system reduces the power needs, weight, and cost of the airborne platform, and also improves operational flexibility.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Inventor: Shlomo Selim RAKIB
  • Patent number: 11601213
    Abstract: An Orthogonal Time Frequency Space Modulation (OTFS) modulation scheme that maps data symbols, along with optional pilot symbols, using a symplectic-like transformation such as a 2D Fourier transform and optional scrambling operation, into a complex wave aggregate and be backward compatible with legacy OFDM systems, is described. This wave aggregate may be processed for transmission by selecting portions of the aggregate according to various time and frequency intervals. The output from this process can be used to modulate transmitted waveforms according to various time intervals over a plurality of narrow-band subcarriers, often by using mutually orthogonal subcarrier “tones” or carrier frequencies. The entire wave aggregate may be transmitted over various time intervals. At the receiver, an inverse of this process can be used to both characterize the data channel and to correct the received signals for channel distortions, thus receiving a clear form of the original data symbols.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 7, 2023
    Assignee: Cohere Technologies, Inc.
    Inventors: Shlomo Selim Rakib, Ronny Hadani
  • Publication number: 20230045595
    Abstract: Techniques for performing channel estimation in an orthogonal time, frequency and space (OTFS) communication system include receiving a wireless signal comprising a data signal portion and a pilot signal portion in which the pilot signal portion includes multiple pilot signals multiplexed together in the OTFS domain, performing two-dimensional channel estimation in a time-frequency domain based on a minimum mean square error (MMSE) optimization criterion, and recovering information bits using a channel estimate obtained from the two-dimensional channel estimation.
    Type: Application
    Filed: June 6, 2022
    Publication date: February 9, 2023
    Inventors: Yoav Hebron, Shlomo Selim Rakib, Ronny Hadani, Michail Tsatsanis, Clayton Ambrose, Jim Delfeld, Robert Fanfelle
  • Patent number: 11575557
    Abstract: Orthogonal Time Frequency Space (OTFS) is a novel modulation scheme with significant benefits for 5G systems. The fundamental theory behind OTFS is presented in this paper as well as its benefits. We start with a mathematical description of the doubly fading delay-Doppler channel and develop a modulation that is tailored to this channel. We model the time varying delay-Doppler channel in the time-frequency domain and derive a new domain (the OTFS domain) where we show that the channel is transformed to a time invariant one and all symbols see the same SNR. We explore aspects of the modulation like delay and Doppler resolution, and address design and implementation issues like multiplexing multiple users and evaluating complexity. Finally we present some performance results where we demonstrate the superiority of OTFS.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 7, 2023
    Assignee: Cohere Technologies, Inc.
    Inventors: Ronny Hadani, Shlomo Selim Rakib, Anton Monk, Michail Tsatsanis, Yoav Hebron
  • Patent number: 11558157
    Abstract: A fixed wireless access system is implemented using orthogonal time frequency space multiplexing (OTFS). Data transmissions to/from different devices share transmission resources using—delay Doppler multiplexing, time-frequency multiplexing, multiplexing at stream and/or layer level, and angular multiplexing. Time-frequency multiplexing is achieved by dividing the time-frequency plan into subgrids, with the subsampled time frequency grid being used to carry the OTFS data. Antenna implementations include a hemispherical antenna with multiple antenna elements arranged in an array to achieve multiplexing.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: January 17, 2023
    Assignee: Cohere Technologies, Inc.
    Inventors: Shlomo Selim Rakib, Ronny Hadani, Richard Benner, Robert Fanfelle
  • Patent number: 11522600
    Abstract: An airborne RF-head platform system and method. Here, much of the computational burden of transmitting and receiving wireless RF waveforms is shifted from the airborne platform to a ground baseband unit (BBU). The airborne platform, which will often be a high altitude balloon or drone type platform, generally comprises one or more remote radio heads, configured with antennas, A/D and D/A converters, frequency converters, RF amplifiers, and the like. The airborne platform communicates with the ground baseband units either directly via a laser communications link, or indirectly through another airborne relay platform. The airborne RF-head communicates via various wireless protocols to various user equipment such as smartphones by using the BBU and the laser communications link to precisely control the function of the airborne A/D and D/A converters and antennas. This system reduces the power needs, weight, and cost of the airborne platform, and also improves operational flexibility.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: December 6, 2022
    Assignee: Cohere Technologies, Inc.
    Inventor: Shlomo Selim Rakib
  • Publication number: 20220352933
    Abstract: A wireless communication device includes a feed port comprising multiple input feeds, a precoding subsystem that is electrically connected to the feed port; and an antenna subsystem electrically connected to the precoding subsystem. The antenna subsystem is configured to transmit an output signal of the precoding subsystem to multiple wireless stations using multiple beams. The precoding subsystem is configured to perform a precoding operation on an input signal from the feed port, wherein the precoding operation maximizes a desired signal level to interference ratio of transmissions to the multiple wireless stations.
    Type: Application
    Filed: September 28, 2020
    Publication date: November 3, 2022
    Inventors: Shlomo Selim RAKIB, Ronny HADANI, Shachar KONS
  • Patent number: 11470485
    Abstract: Computerized wireless transmitter/receiver system that automatically uses combinations of various methods, including transmitting data symbols by weighing or modulating a family of time shifted and frequency shifted waveforms bursts, pilot symbol methods, error detection methods, MIMO methods, and other methods, to automatically determine the structure of a data channel, and automatically compensate for signal distortions caused by various structural aspects of the data channel, as well as changes in channel structure. Often the data channel is a two or three dimensional space in which various wireless transmitters, receivers and signal reflectors are moving. The invention's modulation methods detect locations and speeds of various reflectors and other channel impairments. Error detection schemes, variation of modulation methods, and MIMO techniques further detect and compensate for impairments.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 11, 2022
    Assignee: Cohere Technologies, Inc.
    Inventors: Shlomo Selim Rakib, Ronny Hadani
  • Publication number: 20220311489
    Abstract: Methods, systems, and devices for spectral sharing wireless systems, wherein multiple user devices share time and frequency resources for uplink and/or downlink transmissions, are described. One example method includes transmitting transmission symbols from the network station to at least one user device by processing through a first precoder and a pre-compensation stage, wherein the pre-compensation stage is selected to have the transmission symbols receivable at the at least one user device to appear as if the transmission symbols are processed by a second precoder different from the first precoder.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 29, 2022
    Inventors: Shlomo Selim RAKIB, Shachar KONS, Ronny HADANI
  • Patent number: 11456908
    Abstract: A system and method for orthogonal time frequency space communication and waveform generation. The method includes receiving a plurality of information symbols and encoding an N×M array containing the plurality of information symbols into a two-dimensional array of modulation symbols by spreading each of the plurality of information symbols with respect to both time and frequency. The two-dimensional array of modulation symbols is then transmitted using M mutually orthogonal waveforms included within M frequency sub-bands.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 27, 2022
    Assignee: Cohere Technologies, Inc.
    Inventors: Shlomo Selim Rakib, Ronny Hadani
  • Publication number: 20220224464
    Abstract: Methods, systems and devices for fractional cooperative multipoint network operation are described. One example method for wireless communication includes determining, by a network device, a cooperative multipoint (COMP) management status of wireless devices served by the network device, and providing, by the network device, wireless connectivity to the one or more wireless devices, wherein the network device jointly manages transmission resources for a first wireless device due to the COMP management status being a joint COMP status and the network device locally manages transmission resources for a second wireless device due to the COMP management status being a local COMP status.
    Type: Application
    Filed: May 8, 2020
    Publication date: July 14, 2022
    Inventor: Shlomo Selim RAKIB
  • Publication number: 20220190879
    Abstract: Methods, systems and devices for massive cooperative multipoint network operation are described. One example method for wireless communication includes transmitting, by a network node serving a plurality of mobile devices in a surrounding area, channel condition information and scheduling information for one or more of the plurality of mobile devices to a network-side server, receiving, by the network node from the network-side server, control information for scheduling transmissions to or from each of the one or more of the plurality of mobile devices, and controlling, by the network node and based on the control information, a communication to or from the one or more of the plurality of mobile devices at a future time or a different frequency band or a different spatial direction.
    Type: Application
    Filed: April 3, 2020
    Publication date: June 16, 2022
    Inventor: Shlomo Selim RAKIB
  • Patent number: 11362786
    Abstract: Techniques for performing channel estimation in an orthogonal time, frequency and space (OTFS) communication system include receiving a wireless signal comprising a data signal portion and a pilot signal portion in which the pilot signal portion includes multiple pilot signals multiplexed together in the OTFS domain, performing two-dimensional channel estimation in a time-frequency domain based on a minimum mean square error (MMSE) optimization criterion, and recovering information bits using a channel estimate obtained from the two-dimensional channel estimation.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: June 14, 2022
    Assignee: Cohere Technologies, Inc.
    Inventors: Yoav Hebron, Shlomo Selim Rakib, Ronny Hadani, Michail Tsatsanis, Clayton Ambrose, Jim Delfeld, Robert Fanfelle
  • Patent number: 11362872
    Abstract: Wireless communication techniques for transmitting and receiving reference signals is described. The reference signals may include pilot signals that are transmitted using transmission resources that are separate from data transmission resources. Pilot signals are continuously transmitted from a base station to user equipment being served. Pilot signals are generated from delay-Doppler domain signals that are processed to obtain time-frequency signals that occupy a two-dimensional lattice in the time frequency domain that is non-overlapping with a lattice corresponding to data signal transmissions.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: June 14, 2022
    Assignee: Cohere Technologies, Inc.
    Inventors: Ronny Hadani, Shlomo Selim Rakib, Anthony Ekpenyong, Clayton Ambrose, Shachar Kons
  • Publication number: 20220086694
    Abstract: Methods, systems and devices for distributed cooperative operation of wireless cells based on sparse channel representations are described. One example method includes providing, using a server, seamless wireless connectivity in an area in which a plurality of network nodes are organized as clusters, where each network node is configured to provide wireless connectivity via N angular sectors covering a surrounding area, where N is an integer and wherein angular sectors of the plurality of network nodes collectively cover the area; controlling, by the server, network nodes in a cluster to collect channel condition information for the N angular sectors and communicate the channel condition information to the network-side server, and operating the server to use the channel condition information collected from the network nodes in the cluster to control communication for the network nodes in the cluster at a different time or a different frequency or a different spatial direction.
    Type: Application
    Filed: December 31, 2019
    Publication date: March 17, 2022
    Inventors: Shachar Kons, Shlomo Selim Rakib, Ronny Hadani
  • Publication number: 20220085928
    Abstract: Device, methods and systems for implementing aspects of orthogonal time frequency space (OTFS) modulation in wireless systems are described. In an aspect, the device may include a surface of an object for receiving an electromagnetic signal. The surface may be structured to perform a non-electrical function for the object. The surface may generate an electrical signal from an electromagnetic signal. The electromagnetic signal may be received from a transmitter. The transmitter may map digital data to a digital amplitude modulation constellation in a time-frequency space. The digital amplitude modulation constellation may be mapped to a delay-Doppler domain and the transmitter may transmit to the surface according to an orthogonal time frequency space modulation signal scheme. The apparatus may further include a demodulator to demodulate the electrical signal to determine digital data.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Seshadri Sathyanarayan, Shlomo Selim Rakib
  • Publication number: 20220045890
    Abstract: Orthogonal Time Frequency Space (OTFS) is a novel modulation scheme with significant benefits for 5G systems. The fundamental theory behind OTFS is presented in this paper as well as its benefits. We start with a mathematical description of the doubly fading delay-Doppler channel and develop a modulation that is tailored to this channel. We model the time varying delay-Doppler channel in the time-frequency domain and derive a new domain (the OTFS domain) where we show that the channel is transformed to a time invariant one and all symbols see the same SNR. We explore aspects of the modulation like delay and Doppler resolution, and address design and implementation issues like multiplexing multiple users and evaluating complexity. Finally we present some performance results where we demonstrate the superiority of OTFS.
    Type: Application
    Filed: June 14, 2021
    Publication date: February 10, 2022
    Inventors: Ronny Hadani, Shlomo Selim Rakib, Anton Monk, Michail Tsatsanis, Yoav Hebron
  • Publication number: 20210399852
    Abstract: A fixed wireless access system is implemented using orthogonal time frequency space multiplexing (OTFS). Data transmissions to/from different devices share transmission resources using—delay Doppler multiplexing, time-frequency multiplexing, multiplexing at stream and/or layer level, and angular multiplexing. Time-frequency multiplexing is achieved by dividing the time-frequency plan into subgrids, with the subsampled time frequency grid being used to carry the OTFS data. Antenna implementations include a hemispherical antenna with multiple antenna elements arranged in an array to achieve multiplexing.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 23, 2021
    Inventors: Shlomo Selim Rakib, Ronny Hadani, Richard Benner, Robert Fanfelle
  • Publication number: 20210367645
    Abstract: A method for signal transmission using precoded symbol information involves estimating a two-dimensional model of a communication channel in a delay-Doppler domain. A perturbation vector is determined in a delay-time domain wherein the delay-time domain is related to the delay-Doppler domain by an FFT operation. User symbols are modified based upon the perturbation vector so as to produce perturbed user symbols. A set of Tomlinson-Flarashima precoders corresponding to a set of fixed times in the delay-time domain may then be determined using a delay-time model of the communication channel. Precoded user symbols are generated by applying the Tomlinson-Flarashima precoders to the perturbed user symbols. A modulated signal is then generated based upon the precoded user symbols and provided for transmission over the communication channel.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 25, 2021
    Inventors: Jim Delfeld, Shlomo Selim Rakib