Patents by Inventor Shou-Zen Chang

Shou-Zen Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230171966
    Abstract: A 3D monolithic stacking memory structure is provided in the present invention, including a semiconductor substrate, a field effect transistor (FET) on the semiconductor substrate, a plurality of back-end metal layers on the FET and the semiconductor substrate, an oxide-semiconductor FET (OSFET) in the back-end metal layers, wherein a drain of the OSFET is connected with a gate of the FET, and a FEMIM storage capacitor formed on the back-end metal layers, wherein a bottom electrode of the FEMIM storage capacitor is connected with the drain of the OSFET and the gate of the FET, and the FET, the OSFET and the FEMIM storage capacitor are stacked in order from bottom to top on the semiconductor substrate.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 1, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Ming-Han Liao, Min-Cheng Chen, Hiroshi Yoshida
  • Patent number: 11658392
    Abstract: A package structure including a first redistribution circuit structure, a semiconductor die, first antennas and second antennas is provided. The semiconductor die is located on and electrically connected to the first redistribution circuit structure. The first antennas and the second antennas are located over the first redistribution circuit structure and electrically connected to the semiconductor die through the first redistribution circuit structure. A first group of the first antennas are located at a first position, a first group of the second antennas are located at a second position, and the first position is different from the second position in a stacking direction of the first redistribution circuit structure and the semiconductor die.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nan-Chin Chuang, Chen-Hua Yu, Chung-Shi Liu, Chao-Wen Shih, Shou-Zen Chang
  • Publication number: 20230137738
    Abstract: A ferroelectric memory structure including a substrate, a ferroelectric capacitor structure, and a switch device is provided. The ferroelectric capacitor structure is disposed on the substrate. The ferroelectric capacitor structure includes at least one first electrode, first dielectric layers, a second electrode, and a ferroelectric material layer. The at least one first electrode and the first dielectric layers are alternately stacked. The second electrode penetrates through the first electrode. The ferroelectric material layer is disposed between the first electrode and the second electrode. The switch device is electrically connected to the ferroelectric capacitor structure.
    Type: Application
    Filed: November 30, 2021
    Publication date: May 4, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Ming-Han Liao, Min-Cheng Chen, Hiroshi Yoshida
  • Patent number: 11610621
    Abstract: An oxide semiconductor based FRAM is provided in the present invention, including a substrate, a write electrode on the substrate, a ferroelectric dielectric layer on the write electrode, an oxide semiconductor layer on the ferroelectric dielectric layer, a source and a drain respectively on the oxide semiconductor layer and spaced apart at a distance, wherein the source and the drain are further connected to a plate line and a bit line respectively, a gate insulating layer on the source, the drain and the oxide semiconductor layer, and a word line on the gate insulating layer, wherein the word line, the oxide semiconductor layer, the ferroelectric dielectric layer and the write electrode overlapping each other in a direction vertical to the substrate.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: March 21, 2023
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Ming-Han Liao, Min-Cheng Chen, Hiroshi Yoshida
  • Publication number: 20230071750
    Abstract: An oxide semiconductor based FRAM is provided in the present invention, including a substrate, a write electrode on the substrate, a ferroelectric dielectric layer on the write electrode, an oxide semiconductor layer on the ferroelectric dielectric layer, a source and a drain respectively on the oxide semiconductor layer and spaced apart at a distance, wherein the source and the drain are further connected to a plate line and a bit line respectively, a gate insulating layer on the source, the drain and the oxide semiconductor layer, and a word line on the gate insulating layer, wherein the word line, the oxide semiconductor layer, the ferroelectric dielectric layer and the write electrode overlapping each other in a direction vertical to the substrate.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 9, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Ming-Han Liao, Min-Cheng Chen, Hiroshi Yoshida
  • Publication number: 20230038759
    Abstract: A ferroelectric memory structure including a first conductive line, a second conductive line, and a memory cell is provided. The second conductive line is disposed on the first conductive line. The memory cell is disposed between the first and second conductive lines. The memory cell includes a switch device and a ferroelectric capacitor structure. The switch device is disposed between the first and second conductive lines. The ferroelectric capacitor structure is disposed between the first conductive line and the switch device. The ferroelectric capacitor structure includes ferroelectric capacitors electrically connected. Each of the ferroelectric capacitors includes a first conductive layer, a second conductive layer, and a ferroelectric material layer. The second conductive layer is disposed on the first conductive layer. The ferroelectric material layer is disposed between the first conductive layer and the second conductive layer.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 9, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Ming-Han Liao, Min-Cheng Chen, Hiroshi Yoshida
  • Publication number: 20230034412
    Abstract: A wafer structure and a manufacturing method thereof are provided. The wafer structure includes a substrate structure, a first dielectric layer, multiple test pads, a second dielectric layer, and multiple bond pads. The first dielectric layer is disposed on the substrate structure. The test pads are disposed in and exposed outside the first dielectric layer. Each test pad has a probe mark. The second dielectric layer is disposed on the first dielectric layer. The second dielectric layer has a top surface away from the test pads. Multiple bond pads are disposed in and exposed outside the second dielectric layer. Each bond pad is electrically connected to the corresponding test pad. The bond pads have bonding surfaces away from the test pads. The bonding surfaces are flush with the top surface. In the normal direction of the substrate structure, each bond pad does not overlap the probe mark of the corresponding test pad.
    Type: Application
    Filed: March 31, 2022
    Publication date: February 2, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Chun-Lin Lu, Shou-Zen Chang, Ying-Tsung Chu, Ming-Hsun Tsai
  • Publication number: 20230018214
    Abstract: The invention provides a semiconductor bonding structure, the semiconductor bonding structure includes a first chip and a second chip which are bonded with each other, the first chip has a first bonding pad and the second bonding pad contacted and electrically connected to each other on a bonding interface, the first bonding pad and the second bonding pad are made of copper, and a heterogeneous contact combination in the first chip, the heterogeneous contact combination comprises a contact stack structure of a copper element, a tungsten element and an aluminum element, the tungsten element is located between the copper element and the aluminum element
    Type: Application
    Filed: August 10, 2021
    Publication date: January 19, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Chun-Lin Lu, Shou-Zen Chang, Ying-Tsung Chu, Chi-Ming Chen
  • Publication number: 20230014829
    Abstract: A manufacturing method of a SRAM memory device includes forming two transistors on a substrate, forming an inner dielectric layer covering the two transistors, forming contacts in the inner dielectric layer for coupling to source nodes of the two transistors, forming a metal interconnect structure on the inner dielectric layer, wherein a portion of an n-th metal layer of the metal interconnect structure is utilized as a lower metal layer, wherein n?1. An opening is formed in the metal interconnect structure to expose the lower metal layer, and then a capacitor is formed in the opening. The capacitor includes the lower metal layer, a first electrode layer, a dielectric layer, a second electrode layer, and an upper metal layer from bottom to top. The upper metal layer is a portion of an m-th metal layer of the metal interconnect structure, wherein m?n+1.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Yi-Hsung Wei, Pei-Hsiu Tseng, Jia-You Lin
  • Publication number: 20220406722
    Abstract: A wafer stack structure includes an interlayer, a first wafer, and a second wafer. The interlayer has a first surface and a second surface opposite to the first surface. The intermediate layer includes a dielectric material layer and a redistribution layer embedded in the dielectric material layer. The first wafer is disposed on the first surface of the interlayer. The second wafer is disposed on the second surface of the interlayer. The second wafer is electrically connected to the first wafer through the redistribution layer of the interlayer.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 22, 2022
    Applicants: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Chun-Lin Lu, Jium-Ming Lin
  • Patent number: 11515618
    Abstract: A semiconductor package includes a semiconductor chip and a redistribution layer structure. The redistribution layer structure is arranged to form an antenna transmitter structure and an antenna receiver structure over the semiconductor chip, wherein patterns of the antenna receiver structure are located at different levels of the redistribution layer structure, and at least one pattern of the antenna transmitter structure is at the same level of the topmost patterns of the antenna receiver structure.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Ping Chiang, Chao-Wen Shih, Shou-Zen Chang, Albert Wan, Yu-Sheng Hsieh
  • Publication number: 20220368005
    Abstract: Sensor packages and manufacturing methods thereof are disclosed. One of the sensor packages includes a semiconductor chip and a redistribution layer structure. The semiconductor chip has a sensing surface. The redistribution layer structure is arranged to form an antenna transmitter structure aside the semiconductor chip and an antenna receiver structure over the sensing surface of the semiconductor chip.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Ping Chiang, Chao-Wen Shih, Shou-Zen Chang, Albert Wan, Yu-Sheng Hsieh
  • Patent number: 11502077
    Abstract: Semiconductor devices and manufacturing and design methods thereof are disclosed. In one embodiment, a semiconductor device includes an active FinFET disposed over a workpiece comprising a first semiconductive material, the active FinFET comprising a first fin. An electrically inactive FinFET structure is disposed over the workpiece proximate the active FinFET, the electrically inactive FinFET comprising a second fin. A second semiconductive material is disposed between the first fin and the second fin.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Tung Ying Lee, Wen-Huei Guo, Chih-Hao Chang, Shou-Zen Chang
  • Patent number: 11488965
    Abstract: An SRAM memory device includes a substrate, a first transistor, a second transistor, a metal interconnect structure, and a capacitor. The metal interconnect structure is formed on the first and second transistors. The capacitor is disposed in the metal interconnect structure and coupled between the first transistor and the second transistor. The capacitor includes a lower metal layer, a first electrode layer, a dielectric layer, a second electrode layer, and an upper metal layer from bottom to top. The lower metal layer is coupled to a source node of the first transistor and a source node of the second transistor. The lower metal layer and an n-th metal layer in the metal interconnect structure are formed of a same material, wherein n?1; the upper metal layer and an m-th metal layer in the metal interconnect structure are formed of a same material, wherein m?n+1.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 1, 2022
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Yi-Hsung Wei, Pei-Hsiu Tseng, Jia-You Lin
  • Publication number: 20220310564
    Abstract: A circuit structure for testing through silicon vias (TSVs) in a 3D IC, including a TSV area with multiple TSVs formed therein, and a switch circuit with multiple column lines and row lines forming an addressable test array, wherein two ends of each TSV are connected respectively with a column line and a row line. The switch circuit applies test voltage signals through one of the row lines to the TSVs in the same row and receives current signals flowing through the TSVs in the row from the columns lines, or the switch circuit applies test voltage signals through one of the column lines to the TSVs in the same column and receives current signals flowing through the TSVs in the column from the row lines.
    Type: Application
    Filed: July 13, 2021
    Publication date: September 29, 2022
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Chun-Lin Lu, Chun-Cheng Chen
  • Patent number: 11335655
    Abstract: A package structure include a ground plate, a semiconductor die, a molding compound, and an antenna element. The semiconductor die is located over the ground plate. The molding compound is located over the semiconductor die. The antenna element is located in the molding compound and overlaps with the ground plate along a stacking direction of the ground plate, the semiconductor die and the molding compound. The antenna element has a first side levelled with a first surface of the molding compound, and the ground plate is located between the semiconductor die and the antenna element.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Albert Wan, Chao-Wen Shih, Shou-Zen Chang, Nan-Chin Chuang
  • Patent number: 11329056
    Abstract: A SRAM device includes a substrate, at least one two-transistor static random access memory (2T-SRAM), an inner dielectric layer, a plurality of contacts, an inter-layer dielectric (ILD) layer, a plurality of vias, and a conductive line. The 2T-SRAM is disposed on the substrate, the inner dielectric layer covers the 2T-SRAM, and the contacts are disposed in the inner dielectric layer and coupled to the 2T-SRAM. The ILD layer covers the inner dielectric layer and the contacts, and the vias are disposed in the ILD layer and respectively coupled to the 2T-SRAM trough the corresponding contacts. The conductive line is disposed on the ILD layer and connects with the plurality of vias, wherein the thickness of the conductive line is less than or equal to one-tenth of the thickness of the via such that it can significantly reduce the coupling effect compared with the traditional bit line.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: May 10, 2022
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shou-Zen Chang, Yi-Hsung Wei, Jia-You Lin, Pei-Hsiu Tseng, Chih-Peng Lee, Chi-Wei Lin
  • Patent number: 11245176
    Abstract: In accordance with some embodiments, a package structure includes an RFIC chip. an insulating encapsulation, a redistribution circuit structure, an antenna and a microwave director. The insulating encapsulation encapsulates the RFIC chip. The redistribution circuit structure is disposed on the insulating encapsulation and electrically connected to the RFIC chip. The antenna is disposed on the insulating encapsulation and electrically connected to the RFIC chip through the redistribution circuit structure. The antenna is located between the microwave director and the RFIC chip. The microwave director has a microwave directivity enhancement surface located at a propagating path of a microwave received or generated by the antenna.
    Type: Grant
    Filed: January 12, 2020
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Chien Hsiao, Chen-Hua Yu, Chung-Shi Liu, Chao-Wen Shih, Shou-Zen Chang
  • Patent number: 11211339
    Abstract: A semiconductor device includes a semiconductor die having an insulative layer and a conductive feature in the insulative layer, and a shield in contact with a lateral surface of the conductive feature. In some embodiments, the lateral surface of the conductive feature is aligned with an edge of the insulating material.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: December 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chuei-Tang Wang, Vincent Chen, Tzu-Chun Tang, Chen-Hua Yu, Ching-Feng Yang, Ming-Kai Liu, Yen-Ping Wang, Kai-Chiang Wu, Shou Zen Chang, Wei-Ting Lin, Chun-Lin Lu
  • Patent number: 11211358
    Abstract: Packaged semiconductor devices and methods of packaging semiconductor devices are disclosed. In some embodiments, a packaged semiconductor device includes an integrated circuit die, a first molding material disposed around the integrated circuit die, and a through-via disposed within the first molding material. A first side of a redistribution layer (RDL) is coupled to the integrated circuit die, the through-via, and the first molding material. A second molding material is over a second side of the RDL, the second side of the RDL being opposite the first side of the RDL. The packaged semiconductor device includes an antenna over the second molding material.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Chun Tang, Chuei-Tang Wang, Chun-Lin Lu, Wei-Ting Chen, Vincent Chen, Shou-Zen Chang, Kai-Chiang Wu