Patents by Inventor Shu Satoh

Shu Satoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120025107
    Abstract: A glitch duration threshold is determined based on an allowable dose uniformity, a number of passes of a workpiece through an ion beam, a translation velocity, and a beam size. A beam dropout checking routine repeatedly measures beam current during implantation. A beam dropout counter is reset each time beam current is sufficient. On a first observation of beam dropout, a counter is incremented and a position of the workpiece is recorded. On each succeeding measurement, the counter is incremented if beam dropout continues, or reset if beam is sufficient. Thus, the counter indicates a length of each dropout in a unit associated with the measurement interval. The implant routine stops only when the counter exceeds the glitch duration threshold and a repair routine is performed, comprising recalculating the glitch duration threshold based on one fewer translations of the workpiece through the beam, and performing the implant routine starting at the stored position.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 8080814
    Abstract: A method and apparatus is provided for improving implant uniformity of an ion beam experiencing pressure increase along the beam line. The method comprises generating a main scan waveform that moves an ion beam at a substantially constant velocity across a workpiece. A compensation waveform (e.g., quadratic waveform), having a fixed height and waveform, is also generated and mixed with the main scan waveform (e.g., through a variable mixer) to form a beam scanning waveform. The mixture ratio may be adjusted by an instantaneous vacuum pressure signal, which can be performed at much higher speed and ease than continuously modifying scan waveform. The mixture provides a beam scanning waveform comprising a non-constant slope that changes an ion beam's velocity as it moves across a workpiece. Therefore, the resultant beam scanning waveform, with a non-constant slope, is able to account for pressure non-uniformities in dose along the fast scan direction.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 20, 2011
    Assignee: Axcelis Technologies Inc.
    Inventor: Shu Satoh
  • Patent number: 8071964
    Abstract: An ion implantation system and associated method includes a scanner configured to scan a pencil shaped ion beam into a ribbon shaped ion beam, and a beam bending element configured to receive the ribbon shaped ion beam having a first direction, and bend the ribbon shaped ion beam to travel in a second direction. The system further includes an end station positioned downstream of the beam bending element, wherein the end station is configured to receive the ribbon shaped ion beam traveling in the second direction, and secure a workpiece for implantation thereof. In addition, the system includes a beam current measurement system located at an exit opening of the beam bending element that is configured to measure a beam current of the ribbon shaped ion beam at the exit opening of the beam bending element.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: December 6, 2011
    Assignee: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 8035080
    Abstract: Methods and a system of an ion implantation system are disclosed that are capable of increasing beam current above a maximum kinetic energy of a first charge state from an ion source without changing the charge state at the ion source. Positive ions having a first positive charge state are selected into an accelerator. The positive ions of the first positive charge state are accelerated in acceleration stages and stripped to convert them to positive ions of a second charge state. A second kinetic energy level higher than the maximum kinetic energy level of the first charge state can be obtained.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 11, 2011
    Assignee: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Publication number: 20110215262
    Abstract: A method and apparatus is provided for improving implant uniformity of an ion beam experiencing pressure increase along the beam line. The method comprises generating a main scan waveform that moves an ion beam at a substantially constant velocity across a workpiece. A compensation waveform (e.g., quadratic waveform), having a fixed height and waveform, is also generated and mixed with the main scan waveform (e.g., through a variable mixer) to form a beam scanning waveform. The mixture ratio may be adjusted by an instantaneous vacuum pressure signal, which can be performed at much higher speed and ease than continuously modifying scan waveform. The mixture provides a beam scanning waveform comprising a non-constant slope that changes an ion beam's velocity as it moves across a workpiece. Therefore, the resultant beam scanning waveform, with a non-constant slope, is able to account for pressure non-uniformities in dose along the fast scan direction.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Applicant: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 7973290
    Abstract: The present invention involves a beam energy identification system, comprising an accelerated ion beam, wherein the accelerated ion beam is scanned in a fast scan axis within a beam scanner, wherein the beam scanner is utilized to deflect the accelerated ion beam into narrow faraday cups downstream of the scanner, wherein a difference in scanner voltage or current to position the beam into the Faraday cups is utilized to calculated the energy of ion beam.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: July 5, 2011
    Assignee: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Publication number: 20110101213
    Abstract: Methods and a system of an ion implantation system are disclosed that are capable of increasing beam current above a maximum kinetic energy of a first charge state from an ion source without changing the charge state at the ion source. Positive ions having a first positive charge state are selected into an accelerator. The positive ions of the first positive charge state are accelerated in acceleration stages and stripped to convert them to positive ions of a second charge state. A second kinetic energy level higher than the maximum kinetic energy level of the first charge state can be obtained.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 7858955
    Abstract: An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber that encloses an array of individually controlled gas jets, wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam, wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: December 28, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: Shu Satoh, Edward C. Eisner, Manny Sieradzki
  • Patent number: 7842931
    Abstract: An extraction electrode manipulator system, comprising an ion source, a suppression electrode and a ground electrode, wherein the two electrode are supported by coaxially arranged two water cooled support tubes. A high voltage insulator ring is located on the other end of the coaxial support tube system to act as a mechanical support of the inner tube and also as a high voltage vacuum feedthrough to prevent sputtering and coating of the insulating surface.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 30, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: Shu Satoh, John Adamik, Manny Sieradzki
  • Patent number: 7705328
    Abstract: A ribbon ion beam system, comprising an ion source configured to generate a ribbon ion beam along a first beam path, wherein the ribbon ion beam enters a mass analysis magnet having a height dimension (h1) and a long dimension (w1) that is perpendicular to an xy plane, wherein the mass analysis magnet is configured with its momentum dispersive xy plane to receive the ribbon ion beam and to provide magnetic fields to transmit the ribbon ion beam along a second beam path, wherein the ribbon ion beam exiting the mass analysis magnet is divergent in the non-dispersive xz plane and convergent in the xy plane, a mass selection slit for receiving the divergent ribbon ion beam and selecting desired ion species of the ribbon ion beam exiting the mass analysis magnet, an angle correction device configured to receive the divergent ribbon ion beam exiting the mass selection slit into a parallel ribbon ion beam in the horizontal xz plane and a diverging ribbon ion beam in an xy plane along a third beam path, and wherein t
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 27, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: Shu Satoh, Manny Sieradzki
  • Publication number: 20100072402
    Abstract: An extraction electrode manipulator system, comprising an ion source, a suppression electrode and a ground electrode, wherein the two electrode are supported by coaxially arranged two water cooled support tubes. A high voltage insulator ring is located on the other end of the coaxial support tube system to act as a mechanical support of the inner tube and also as a high voltage vacuum feedthrough to prevent sputtering and coating of the insulating surface.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 25, 2010
    Applicant: Axcelis Technologies, Inc.
    Inventors: Shu Satoh, John Adamik, Manny Sieradzki
  • Publication number: 20100038553
    Abstract: The present invention involves a beam energy identification system, comprising an accelerated ion beam, wherein the accelerated ion beam is scanned in a fast scan axis within a beam scanner, wherein the beam scanner is utilized to deflect the accelerated ion beam into narrow faraday cups downstream of the scanner, wherein a difference in scanner voltage or current to position the beam into the Faraday cups is utilized to calculated the energy of ion beam.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 18, 2010
    Applicant: Axcelis Technologies, Inc
    Inventor: Shu Satoh
  • Publication number: 20090321657
    Abstract: An ion beam uniformity control system, wherein the uniformity control system comprising a differential pumping chamber that encloses an array of individually controlled gas jets, wherein the gas pressure of the individually controlled gas jets are powered by a controller to change the fraction of charge exchanged ions, and wherein the charge exchange reactions between the gas and ions change the fraction of the ions with original charge state of a broad ion beam, wherein the charge exchanged portion of the broad ion beam is removed utilizing an deflector that generates a magnetic field, a Faraday cup profiler for measuring the broad ion beam profile; and adjusting the individually controlled gas jets based upon feedback provided to the controller to obtain the desired broad ion beam.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Applicant: Axcelis Technologies, Inc.
    Inventors: Shu Satoh, Edward C. Eisner, Manny Sieradzki
  • Publication number: 20090272918
    Abstract: An ion implantation system and associated method includes a scanner configured to scan a pencil shaped ion beam into a ribbon shaped ion beam, and a beam bending element configured to receive the ribbon shaped ion beam having a first direction, and bend the ribbon shaped ion beam to travel in a second direction. The system further includes an end station positioned downstream of the beam bending element, wherein the end station is configured to receive the ribbon shaped ion beam traveling in the second direction, and secure a workpiece for implantation thereof. In addition, the system includes a beam current measurement system located at an exit opening of the beam bending element that is configured to measure a beam current of the ribbon shaped ion beam at the exit opening of the beam bending element.
    Type: Application
    Filed: April 28, 2009
    Publication date: November 5, 2009
    Applicant: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Patent number: 7611975
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Peter Michael Banks, Matthew Peter Dobson, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7528390
    Abstract: An ion implantation system for providing a mass analyzed ribbon beam that comprises an ion beam source that includes a plasma source and an extraction component, wherein the extraction component is configured to extract a diverging ion beam and direct the ion beam to a window frame magnet assembly. The window frame magnet assembly comprises two pairs of coils orthogonally arranged within a window shaped yoke to produce an independently controllable uniform cross-field magnetic field. The first set of coils create an uniform field across the width of the diverging beam to convert it to a uniform parallel broad ion beam. The second set of coils bend the sheet of the ion beam in orthogonal direction to give mass dispersion for ion mass selection.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 5, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventor: Shu Satoh
  • Publication number: 20090108198
    Abstract: A ribbon ion beam system, comprising an ion source configured to generate a ribbon ion beam along a first beam path, wherein the ribbon ion beam enters a mass analysis magnet having a height dimension (h1) and a long dimension (w1) that is perpendicular to an xy plane, wherein the mass analysis magnet is configured with its momentum dispersive xy plane to receive the ribbon ion beam and to provide magnetic fields to transmit the ribbon ion beam along a second beam path, wherein the ribbon ion beam exiting the mass analysis magnet is divergent in the non-dispersive xz plane and convergent in the xy plane, a mass selection slit for receiving the divergent ribbon ion beam and selecting desired ion species of the ribbon ion beam exiting the mass analysis magnet, an angle correction device configured to receive the divergent ribbon ion beam exiting the mass selection slit into a parallel ribbon ion beam in the horizontal xz plane and a diverging ribbon ion beam in an xy plane along a third beam path, and wherein t
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Inventors: Shu Satoh, Manny Sieradzki
  • Publication number: 20080078956
    Abstract: An ion implantation system for providing a mass analyzed ribbon beam that comprises an ion beam source that includes a plasma source and an extraction component, wherein the extraction component is configured to extract a diverging ion beam and direct the ion beam to a window frame magnet assembly. The window frame magnet assembly comprises two pairs of coils orthogonally arranged within a window shaped yoke to produce an independently controllable uniform cross-field magnetic field. The first set of coils create an uniform field across the width of the diverging beam to convert it to a uniform parallel broad ion beam. The second set of coils bend the sheet of the ion beam in orthogonal direction to give mass dispersion for ion mass selection.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventor: Shu Satoh
  • Publication number: 20070259511
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 4, 2006
    Publication date: November 8, 2007
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Craig Lowrie, Peter Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7282427
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: October 16, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Ivor Tudor Edwards, Peter Kindersley, Craig Lowrie, Peter Michael Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding