Patents by Inventor Shu-Yi Yu

Shu-Yi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9747435
    Abstract: An apparatus, a method, and a system are presented in which the apparatus may include a security circuit, a processor, and an interface controller. The security circuit may be configured to generate a keyword. The processor may be configured to determine one or more policies to be applied to usage of the keyword, and to generate a policy value. The policy value may include one or more data bits indicative of the determined one or more policies. The interface controller may be configured to generate a message including the keyword and the policy value. The interface controller may also be configured to send the message.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: August 29, 2017
    Assignee: Apple Inc.
    Inventors: Timothy R. Paaske, Weihua Mao, Shu-Yi Yu
  • Publication number: 20170168520
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 9647653
    Abstract: An apparatus may include first and second clock monitors. The first clock monitor may be configured to receive a first clock signal and assert a first signal if the frequency of the first clock signal is greater than a first upper threshold and assert a second signal if the frequency of the first clock signal is less than a first lower threshold. The second clock monitor may be configured to receive a second clock signal with a frequency higher than that of the first clock signal. The second clock monitor may be configured to compare the second clock signal, dependent upon the first clock signal, to second upper and lower thresholds and assert a third signal if the frequency of the second clock signal is greater than the second upper threshold and assert a fourth signal if the frequency is less than the second lower threshold.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: May 9, 2017
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Jean-Didier Allegrucci, Timothy Paaske, Deniz Balkan
  • Patent number: 9547778
    Abstract: In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 17, 2017
    Assignee: Apple Inc.
    Inventors: Timothy R. Paaske, Mitchell D. Adler, Conrad Sauerwald, Fabrice L. Gautier, Shu-Yi Yu
  • Patent number: 9529405
    Abstract: A system and method for managing idleness of functional units in an IC is disclosed. An IC includes a subsystem having a number of functional units and an idle aggregation unit. When a particular functional unit determines that it is idle, it may assert an idle indication to the idle aggregation unit. When the respective idle indications are concurrently asserted for all of the functional units, the idle aggregation unit may assert and provide respective idle request signals to each of the functional units. Responsive to receiving an idle request unit, a given functional unit may provide an acknowledgement signal to the idle aggregation unit if no transactions are incoming. If all functional units have concurrently asserted their respective acknowledgement signals, the idle aggregation unit may provide an indication of the same to a clock gating unit, which may then gate the clock signal(s) received by the functional units.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: December 27, 2016
    Assignee: Apple Inc.
    Inventors: Erik P. Machnicki, Gilbert H. Herbeck, Shu-Yi Yu, Sebastian Skalberg
  • Publication number: 20160359476
    Abstract: An apparatus may include first and second clock monitors. The first clock monitor may be configured to receive a first clock signal and assert a first signal if the frequency of the first clock signal is greater than a first upper threshold and assert a second signal if the frequency of the first clock signal is less than a first lower threshold. The second clock monitor may be configured to receive a second clock signal with a frequency higher than that of the first clock signal. The second clock monitor may be configured to compare the second clock signal, dependent upon the first clock signal, to second upper and lower thresholds and assert a third signal if the frequency of the second clock signal is greater than the second upper threshold and assert a fourth signal if the frequency is less than the second lower threshold.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 8, 2016
    Inventors: Shu-Yi Yu, Jean-Didier Allegrucci, Timothy Paaske, Deniz Balkan
  • Publication number: 20160314295
    Abstract: An apparatus, a method, and a system are presented in which the apparatus may include a security circuit, a processor, and an interface controller. The security circuit may be configured to generate a keyword. The processor may be configured to determine one or more policies to be applied to usage of the keyword, and to generate a policy value. The policy value may include one or more data bits indicative of the determined one or more policies. The interface controller may be configured to generate a message including the keyword and the policy value. The interface controller may also be configured to send the message.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Timothy R. Paaske, Weihua Mao, Shu-Yi Yu
  • Patent number: 9436625
    Abstract: Banks within a dynamic random access memory (DRAM) are managed with virtual bank managers. A DRAM controller receives a new memory access request to DRAM including a plurality of banks. If the request accesses a location in DRAM where no virtual bank manager includes parameters for the corresponding DRAM page, then a virtual bank manager is allocated to the physical bank associated with the DRAM page. The bank manager is initialized to include parameters needed by the DRAM controller to access the DRAM page. The memory access request is then processed using the parameters associated with the virtual bank manager. One advantage of the disclosed technique is that the banks of a DRAM module are controlled with fewer bank managers than in previous DRAM controller designs. As a result, less surface area on the DRAM controller circuit is dedicated to bank managers.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 6, 2016
    Assignee: NVIDIA Corporation
    Inventors: Shu-Yi Yu, Ram Gummadi, John H. Edmondson
  • Publication number: 20160124771
    Abstract: Techniques are disclosed relating to processor power control and interrupts. In one embodiment, an apparatus includes a processor configured to assert an indicator that the processor is suspending execution of instructions until the processor receives an interrupt. In this embodiment, the apparatus includes power circuitry configured to alter the power provided to the processor based on the indicator. In this embodiment, the apparatus includes throttling circuitry configured to, in response to receiving a request from the power circuitry to alter the power provided to the processor, block the request until the end of a particular time interval subsequent to receipt of the request or de-assertion of the indicator. In some embodiments, the particular time interval corresponds to latency between the processor receiving an interrupt and de-asserting the indicator.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 5, 2016
    Inventor: Shu-Yi Yu
  • Patent number: 9274985
    Abstract: Banks within a dynamic random access memory (DRAM) are managed with virtual bank managers. A DRAM controller receives a new memory access request to DRAM including a plurality of banks. If the request accesses a location in DRAM where no virtual bank manager includes parameters for the corresponding DRAM page, then a virtual bank manager is allocated to the physical bank associated with the DRAM page. The bank manager is initialized to include parameters needed by the DRAM controller to access the DRAM page. The memory access request is then processed using the parameters associated with the virtual bank manager. One advantage of the disclosed technique is that the banks of a DRAM module are controlled with fewer bank managers than in previous DRAM controller designs. As a result, less surface area on the DRAM controller circuit is dedicated to bank managers.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 1, 2016
    Assignee: NVIDIA Corporation
    Inventors: Shu-Yi Yu, Ram Gummadi, John H. Edmondson
  • Publication number: 20160048191
    Abstract: A system and method for managing idleness of functional units in an IC is disclosed. An IC includes a subsystem having a number of functional units and an idle aggregation unit. When a particular functional unit determines that it is idle, it may assert an idle indication to the idle aggregation unit. When the respective idle indications are concurrently asserted for all of the functional units, the idle aggregation unit may assert and provide respective idle request signals to each of the functional units. Responsive to receiving an idle request unit, a given functional unit may provide an acknowledgement signal to the idle aggregation unit if no transactions are incoming. If all functional units have concurrently asserted their respective acknowledgement signals, the idle aggregation unit may provide an indication of the same to a clock gating unit, which may then gate the clock signal(s) received by the functional units.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 18, 2016
    Inventors: Erik P. Machnicki, Gilbert H. Herbeck, Shu-Yi Yu, Sebastian Skalberg
  • Patent number: 9262362
    Abstract: A system is disclosed that may compensate for bus timing that may vary over operating conditions of a bus. The system may include a communication bus, a first functional unit configured to transmit data via the communication bus, and a second functional unit configured to receive data via the bus. The first functional unit may transmit a first value via the communication bus to the second functional unit. The first functional unit may be further configured to assert a data valid signal responsive to a determination that a first time period has elapsed since the transmission of the first data value. The second functional unit may be configured to receive the first data value and sample the first data value dependent upon the data valid signal.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 16, 2016
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Timothy R. Paaske
  • Patent number: 9201829
    Abstract: A tracking buffer apparatus is disclosed. A tracking buffer apparatus includes lookup logic configured to locate entries having a transaction identifier corresponding to a received request. The lookup logic is configured to determine which of the entries having the same transaction identifier has a highest priority and thus cause a corresponding entry from a data buffer to be provided. When information is written into the tracking buffer, write logic writes a corresponding transaction identifier to the first free entry. The write logic also writes priority information in the entry based on other entries having the same transaction identifier. The entry currently being written may be assigned a lower priority than all other entries having the same transaction identifier. The priority information for entries having a common transaction identifier with one currently being read are updated responsive to the read operation.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 1, 2015
    Assignee: Apple Inc.
    Inventor: Shu-Yi Yu
  • Patent number: 9135202
    Abstract: Embodiments of a bridge circuit and system are disclosed that may allow for converting transactions from one communication protocol to another. The bridge circuit may be coupled to a first bus employing a first communication protocol, and a second bus employing a second communication protocol. The bridge circuit may be configured to convert transactions from the first communication protocol to the second communication protocol, and convert transaction from the second communication protocol to the first communication protocol. In one embodiment, the bridge circuit may be further configured to flag transactions that cannot be converted from the second communication protocol to the first communication protocol. In a further embodiment, an error circuit coupled to the bridge circuit may be configured to detect flagged transactions.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: September 15, 2015
    Assignee: Apple Inc.
    Inventors: Deniz Balkan, Gurjeet S. Saund, Shu-Yi Yu
  • Patent number: 9135431
    Abstract: A system for monitoring a clock input signal including a reference clock to be monitored, a flip-flop, a plurality of delay logic blocks, a sampling unit, and a comparison unit. The reference clock may have an expected maximum frequency. The flip-flop may be configured to generate a corresponding clock signal at a reduced frequency compared to the reference clock. The plurality of delay logic blocks may be configured to receive the reduced frequency clock signal and delay the signal for various amounts of time, each less than an expected period of the reference clock. The sampling unit may be configured to sample the signals output from the plurality of delay logic blocks. The comparison unit may be configured to receive the outputs of the flip-flop and the sampling unit and use these outputs to determine if the reference clock is running at an acceptable frequency compared to the expected frequency.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: September 15, 2015
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Timothy R. Paaske
  • Publication number: 20150095535
    Abstract: A system is disclosed that may compensate for bus timing that may vary over operating conditions of a bus. The system may include a communication bus, a first functional unit configured to transmit data via the communication bus, and a second functional unit configured to receive data via the bus. The first functional unit may transmit a first value via the communication bus to the second functional unit. The first functional unit may be further configured to assert a data valid signal responsive to a determination that a first time period has elapsed since the transmission of the first data value. The second functional unit may be configured to receive the first data value and sample the first data value dependent upon the data valid signal.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: Apple Inc.
    Inventors: Shu-Yi Yu, Timothy R. Paaske
  • Publication number: 20150033061
    Abstract: A system for monitoring a clock input signal including a reference clock to be monitored, a flip-flop, a plurality of delay logic blocks, a sampling unit, and a comparison unit. The reference clock may have an expected maximum frequency. The flip-flop may be configured to generate a corresponding clock signal at a reduced frequency compared to the reference clock. The plurality of delay logic blocks may be configured to receive the reduced frequency clock signal and delay the signal for various amounts of time, each less than an expected period of the reference clock. The sampling unit may be configured to sample the signals output from the plurality of delay logic blocks. The comparison unit may be configured to receive the outputs of the flip-flop and the sampling unit and use these outputs to determine if the reference clock is running at an acceptable frequency compared to the expected frequency.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: Apple Inc.
    Inventors: Shu-Yi Yu, Timothy R. Paaske
  • Patent number: 8924740
    Abstract: Methods and mechanisms for transmitting secure data. An apparatus includes a storage device configured to store data intended to be kept secure. Circuitry is configured to receive bits of the secure data from the storage device and invert the bits prior to transmission. The circuitry may invert the bits prior to conveyance if more than half of the bits are a binary one, set an inversion signal to indicate whether the one or more bits are inverted, and convey both the one or more bits and inversion signal. Embodiments also include a first source configured to transmit Q bits of the secure data on an interface on each of a plurality of clock cycles. The first source is also configured to generate one or more additional bits to be conveyed concurrent with the Q bits such that a number of binary ones transmitted each clock cycle is constant.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: December 30, 2014
    Assignee: Apple Inc.
    Inventor: Shu-Yi Yu
  • Patent number: 8832465
    Abstract: An SOC implements a security enclave processor (SEP). The SEP may include a processor and one or more security peripherals. The SEP may be isolated from the rest of the SOC (e.g. one or more central processing units (CPUs) in the SOC, or application processors (APs) in the SOC). Access to the SEP may be strictly controlled by hardware. For example, a mechanism in which the CPUs/APs can only access a mailbox location in the SEP is described. The CPU/AP may write a message to the mailbox, which the SEP may read and respond to. The SEP may include one or more of the following in some embodiments: secure key management using wrapping keys, SEP control of boot and/or power management, and separate trust zones in memory.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: September 9, 2014
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Michael J. Smith, Shu-Yi Yu
  • Patent number: 8812892
    Abstract: One embodiment of the present invention sets forth a technique for performing high-performance clock training. One clock training sweep operation is performed to determine phase relationships for two write clocks with respect to a command clock. The phase relationships are generated to satisfy timing requirements for two different client devices, such as GDDR5 DRAM components. A second clock training sweep operation is performed to better align local clocks operating on the client devices. A voting tally is maintained during the second clock training sweep to record phase agreement at each step in the clock training sweep. The voting tally then determines whether one of the local clocks should be inverted to better align the two local clocks.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 19, 2014
    Assignee: NVIDIA Corporation
    Inventors: Eric Lyell Hill, Russell R. Newcomb, Shu-Yi Yu