Patents by Inventor Shuaigang Xiao

Shuaigang Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10564119
    Abstract: A DNA sequencing device includes a first layer having a nanochannel formed therein, and a pair of electrodes arranged vertically relative to each other and spaced apart to define an electrode gap. The electrode gap is exposed in the nanochannel, and the electrode gap is in the range of about 0.3 nm to about 2 nm.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: February 18, 2020
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: David S. Kuo, ShuaiGang Xiao, Kim Yang Lee, Xiaomin Yang, Koichi Wago, Thomas Young Chang
  • Patent number: 10529366
    Abstract: A data storage medium may have increased data capacity by being configured with first and second patterned pedestals that are each separated from a substrate by a seed layer. A first polymer brush layer can be positioned between the first and second patterned pedestals atop the seed layer and a second polymer brush layer may be positioned atop each patterned pedestal. The first and second polymer brush layers may be chemically different and a block copolymer can be deposited to self-assemble into separate magnetic domains aligned with either the first or second polymer brush layers.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: January 7, 2020
    Assignee: Seagate Technology LLC
    Inventors: Austin P. Lane, Xiaomin Yang, ShuaiGang Xiao, Kim Yang Lee, David S. Kuo
  • Patent number: 10151978
    Abstract: Provided herein is a method, including creating a first layer over a substrate, wherein the first layer is configured for directed self-assembly of a block copolymer thereover; creating a continuous second layer over the first layer by directed self-assembly of a block copolymer, wherein the second layer is also configured for directed self-assembly of a block copolymer thereover; and creating a third layer over the continuous second layer by directed self-assembly of a block copolymer. Also provided is an apparatus, comprising a continuous first layer comprising a thin film of a first, phase-separated block copolymer, wherein the first layer comprises a first chemoepitaxial template configured for directed self-assembly of a block copolymer thereon; and a second layer on the first layer, wherein the second layer comprises a thin film of a second, phase-separated block copolymer.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 11, 2018
    Assignee: Seagate Technology LLC
    Inventors: XiaoMin Yang, Shuaigang Xiao, Kim Y. Lee, David S. Kuo
  • Publication number: 20180294007
    Abstract: A data storage medium may have increased data capacity by being configured with first and second patterned pedestals that are each separated from a substrate by a seed layer. A first polymer brush layer can be positioned between the first and second patterned pedestals atop the seed layer and a second polymer brush layer may be positioned atop each patterned pedestal. The first and second polymer brush layers may be chemically different and a block copolymer can be deposited to self-assemble into separate magnetic domains aligned with either the first or second polymer brush layers.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 11, 2018
    Inventors: Austin P. Lane, Xiaomin Yang, ShuaiGang Xiao, Kim Yang Lee, David S. Kuo
  • Publication number: 20180259475
    Abstract: A DNA sequencing device, and related method, which include a nanopore having a maximum width dimension of no greater than about 50 nm, and a pair of electrodes having a spacing of no greater than about 2 nm, the electrodes being exposed within the nanopore to measure a DNA strand passing through the nanopore.
    Type: Application
    Filed: February 1, 2018
    Publication date: September 13, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: ShuaiGang XIAO, David S. KUO, Xiaomin YANG, Kim Yang LEE, Yautzong HSU, Michael R. FELDBAUM
  • Publication number: 20180245149
    Abstract: A nanochannel DNA sequencing device and related methods of fabrication and of DNA sequencing are provided. In one example, a device may include a nanochannel having a width of no greater than about 2 nm and a height no greater than 1.5 times the width. The device may further include a pair of electrodes having a width of no greater than about 10 nm, the electrodes being exposed within the nanochannel to measure electronical characteristics of a DNA strand passing through the nanochannel. In one example, the nanochannel may be formed using lithography techniques, such as sidewall lithography.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 30, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: ShuaiGang XIAO, David S. KUO, Kim Yang LEE, Xiaomin YANG, Koichi WAGO, Thomas Young CHANG
  • Publication number: 20180217083
    Abstract: A DNA sequencing device, and related methods, include a nanopore or nanochannel structure, and a nanoelectrode. The nanoelectrode includes electrode members having free ends exposed within the nanopore or nanochannel structure, an electrode gap defined between of the free ends, and plated portions formed on the free ends to provide a reduced sized for the electrode gap.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: David S. KUO, Xiaomin YANG, ShuaiGang XIAO, Kim Yang LEE, Koichi WAGO, Thomas Young CHANG
  • Publication number: 20180216178
    Abstract: A DNA sequencing device and related methods, wherein the device includes a substrate, a nanochannel formed in the substrate, a first electrode positioned on a first side of the nanochannel, and a second electrode. The second electrode is positioned on a second side of the nanochannel opposite the first electrode, and is spaced apart from the first electrode to form an electrode gap that is exposed in the nanochannel. At least a portion of first electrode is movable relative to the second electrode to decrease a size of the electrode gap.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kim Yang LEE, Thomas Young CHANG, David S. KUO, ShuaiGang XIAO, Xiaomin YANG, Koichi WAGO
  • Publication number: 20180216179
    Abstract: Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xiaomin YANG, ShuaiGang XIAO, David S. KUO, Koichi WAGO, Thomas Young CHANG
  • Publication number: 20180217084
    Abstract: A DNA sequencing device includes a first layer having a nanochannel formed therein, and a pair of electrodes arranged vertically relative to each other and spaced apart to define an electrode gap. The electrode gap is exposed in the nanochannel, and the electrode gap is in the range of about 0.3 nm to about 2 nm.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: David S. KUO, ShuaiGang XIAO, Kim Yang LEE, Xiaomin YANG, Koichi WAGO, Thomas Young CHANG
  • Publication number: 20180216180
    Abstract: A DNA sequencing device, and related methods, include a nanochannel sized to receive a DNA strand, a first electrode member exposed within the nanochannel, and a second electrode member exposed within the nanochannel and spaced apart from the first electrode to form an electrode gap. The second electrode member has a wedge shaped profile, and the first and second electrode members are operable to detect a change in electronic signal as the DNA strand passes through the electrode gap.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kim Yang LEE, David S. KUO, Thomas Young CHANG, Xiaomin YANG, ShuaiGang XIAO, Koichi WAGO
  • Publication number: 20180216169
    Abstract: Apparatus and methods to sequence DNA. A DNA sequencing device includes a passage, a first electrode, and a second electrode. The passage has a width and a length. The first and second electrodes are exposed within the passage and spaced apart from each other to form an electrode gap. The electrode gap is no greater than about 2 nm. The DNA sequencing device is operable to measure with the first and second electrodes a change in electronic signal in response to nucleotides of a DNA strand passing through the electrode gap.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 2, 2018
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Koichi WAGO, ShuaiGang XIAO, Xiaomin YANG, Kim Yang LEE, David S. KUO, Thomas Young CHANG
  • Patent number: 9964855
    Abstract: A method is disclosed that includes forming at least one substrate alignment mark and at least one lithography alignment mark in a substrate; forming a seed layer on the substrate; and forming a guide pattern and at least one guide pattern alignment mark in the seed layer, where the at least one guide pattern alignment mark is formed over the at least one substrate alignment mark. The method further includes determining an alignment error of the at least one guide pattern alignment mark relative to the at least one substrate alignment mark; and patterning features on at least one region of the substrate, where the features are positioned on the substrate based on the at least one lithography alignment mark and the alignment error.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: May 8, 2018
    Assignee: Seagate Technology LLC
    Inventors: HongYing Wang, Kim Y. Lee, Yautzong Hsu, Nobuo Kurataka, Gennady Gauzner, Shuaigang Xiao
  • Patent number: 9934806
    Abstract: Provided herein is a method, including creating a first pattern in a data region of a substrate, and creating a second pattern in a servo region of a substrate. A circumferential line pattern is created overlapping the first pattern to create rectangle-shaped protrusions in the data region of the substrate. A chevron pattern is created overlapping the second pattern to create chevron-derived protrusions in the servo region of the substrate.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: April 3, 2018
    Assignee: Seagate Technology LLC
    Inventors: Shuaigang Xiao, David S. Kuo, XiaoMin Yang, Kim Y. Lee, Yautzong Hsu, Koichi Wago
  • Patent number: 9928867
    Abstract: Provided herein are apparatuses and methods, including patterning a first set of features in a servo zone to form a patterned servo zone while a first mask protects a data zone from the patterning. The first mask may be removed from the data zone. The apparatuses and methods may further include patterning a second set of features in the data zone to form a patterned data zone while a second mask protects the patterned servo zone from the patterning.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: March 27, 2018
    Assignee: Seagate Technology LLC
    Inventors: Shuaigang Xiao, XiaoMin Yang, ZhaoNing Yu, Yautzong Hsu
  • Patent number: 9865294
    Abstract: Provided herein is a method including forming a data zone guiding pattern and forming a servo zone guiding pattern. A servo pattern and a data pattern are simultaneously formed. Directed self-assembly of block copolymers is guided by the data zone guiding pattern and the servo zone guiding pattern.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 9, 2018
    Assignee: Seagate Technology LLC
    Inventors: ShuaiGang Xiao, XiaoMin Yang, David S. Kuo, Kim Yang Lee, Yautzong Hsu
  • Patent number: 9837274
    Abstract: Provided is an apparatus that includes a substrate; a first hard-mask pattern that includes a number of first features disposed over a top surface of the substrate; and a second hard-mask pattern disposed over the first hard-mask layer. The second hard-mask pattern includes a number of second features overlapping one or more of the first features.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: December 5, 2017
    Assignee: Seagate Technology LLC
    Inventors: XiaoMin Yang, Shuaigang Xiao, Yautzong Hsu, Zhaoning Yu, Kim Y. Lee, David S. Kuo
  • Publication number: 20170307976
    Abstract: Provided herein is a method, including creating a first layer over a substrate, wherein the first layer is configured for directed self-assembly of a block copolymer thereover; creating a continuous second layer over the first layer by directed self-assembly of a block copolymer, wherein the second layer is also configured for directed self-assembly of a block copolymer thereover; and creating a third layer over the continuous second layer by directed self-assembly of a block copolymer. Also provided is an apparatus, comprising a continuous first layer comprising a thin film of a first, phase-separated block copolymer, wherein the first layer comprises a first chemoepitaxial template configured for directed self-assembly of a block copolymer thereon; and a second layer on the first layer, wherein the second layer comprises a thin film of a second, phase-separated block copolymer.
    Type: Application
    Filed: November 18, 2014
    Publication date: October 26, 2017
    Inventors: XiaoMin YANG, Shuaigang XIAO, Kim Y. LEE, David S. KUO
  • Patent number: 9773520
    Abstract: The embodiments disclose a method of using a trimmed imprinted resist and chemical contrast pattern to guide a directed self-assembly (DSA) of a predetermined lamellar block copolymer (BCP), creating chromium (Cr) lamellar guiding lines using the BCP and DSA in a dry Cr lift-off process and etching the Cr lamellar guiding line patterns into a substrate to fabricate the imprint template.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 26, 2017
    Assignee: Seagate Technology LLC
    Inventors: XiaoMin Yang, Shuaigang Xiao, Yautzong Hsu, HongYing Wang, Kim Y. Lee
  • Publication number: 20170125049
    Abstract: Provided herein is a method, including creating a first pattern in a data region of a substrate, and creating a second pattern in a servo region of a substrate. A circumferential line pattern is created overlapping the first pattern to create rectangle-shaped protrusions in the data region of the substrate. A chevron pattern is created overlapping the second pattern to create chevron-derived protrusions in the servo region of the substrate.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 4, 2017
    Inventors: Shuaigang Xiao, David S. Kuo, XiaoMin Yang, Kim Y. Lee, Yautzong Hsu, Koichi Wago