Patents by Inventor Shuichi Kanno

Shuichi Kanno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020131913
    Abstract: In a PFC decomposing apparatus according to the present invention, PFC contained in a discharged gas is decomposed in catalyst cartridge 3 packed with a catalyst containing 80% Al2O3 and 20% NiO. The discharged gas containing acid gases as a decomposition gas is cooled in cooling chamber 6 and led to discharged gas washing column 13, where the acid gases are removed. Mists of acid gases (SO3 mists or NOx mists) entrained in the discharged gas are separed in cyclone 16. Compressed air at about 0.1 Mpa is fed to ejector 24 through air feed pipe 56. The interior of ejector 24 is brought into a negative pressure state by the compressed air to such the discharged gas from cyclone 16 and ejector. Ejector 24 can reduce a frequency of maintenance inspection, as compared with a blower.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 19, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Shin Tamata, Ri Koukun, Kazuyoshi Irie, Yoshiki Shibano, Shuichi Kanno
  • Publication number: 20020131912
    Abstract: In a PFC decomposing apparatus according to the present invention, PFC contained in a discharged gas is decomposed in catalyst cartridge 3 packed with a catalyst containing 80% Al2O3 and 20% NiO. The discharged gas containing acid gases as a decomposition gas is cooled in cooling chamber 6 and led to discharged gas washing column 13, where the acid gases are removed. Mists of acid gases (SO3 mists or NOx mists) entrained in the discharged gas are separed in cyclone 16. Compressed air at about 0.1 Mpa is fed to ejector 24 through air feed pipe 56. The interior of ejector 24 is brought into a negative pressure state by the compressed air to such the discharged gas from cyclone 16 and ejector. Ejector 24 can reduce a frequency of maintenance inspection, as compared with a blower.
    Type: Application
    Filed: August 29, 2001
    Publication date: September 19, 2002
    Inventors: Shin Tamata, Ri Koukun, Kazuyoshi Irie, Yoshiki Shibano, Shuichi Kanno
  • Publication number: 20020122750
    Abstract: In order to prevent exhaust pipe for exhausting perfluorocompound (PFC) decomposition gas after washing from corrosion, a mist separating apparatus is provided at a rear stage of the washing tower for washing the PFC decomposition gas. The corrosion of the exhaust pipe can be prevented by removing the mist from the washed gas.
    Type: Application
    Filed: May 3, 2002
    Publication date: September 5, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Shuichi Kanno, Hisao Yamashita, Tomohiko Miyamoto, Shin Tamata, Yoshiki Shibano, Takeo Komuro, Tsugihiro Yukitake, Terufumi Kawasaki
  • Publication number: 20010031228
    Abstract: An exhaust gas containing a perfluoride component (PFC) and SiF4 is conducted into a silicon remover and brought into contact with water. A reaction water supplied from a water supplying piping and air supplied from an air supplying piping are mixed with the exhaust gas exhausted from the silicon remover. The exhaust gas containing water, air, and CF4 is heated at 700° C. by a heater. The exhaust gas containing PFC is conducted to a catalyst layer filled with an alumina group catalyst. The PFC is decomposed to HF and CO2 at a high temperature exhausted from the catalyst layer is cooled in a cooling apparatus. Subsequently, the exhaust gas is conducted to an acidic gas removing apparatus to remove HF. In this way, the silicon component is removed from the exhaust gas before introducing the exhaust gas into the catalyst layer. Therefore, the surface of the catalyst can be utilized effectively, and the decomposition reaction of the perfluoride compound can be improved.
    Type: Application
    Filed: May 16, 2001
    Publication date: October 18, 2001
    Inventors: Kazuyoshi Irie, Toshihiro Mori, Hisao Yokoyama, Takayuki Tomiyama, Toshihide Takano, Shin Tamata, Shuichi Kanno
  • Publication number: 20010001652
    Abstract: A gas stream containing at least one fluorine compound selected from the group consisting of compounds of carbon and fluorine, compounds of carbon, hydrogen and fluorine, compounds of sulfur and fluorine, compounds of nitrogen and fluorine and compounds of carbon, hydrogen, oxygen and fluorine is contacted with a catalyst comprising at least one of alumina, titania, zirconia and silica, preferably a catalyst comprising alumina and at least one of nickel oxide, zinc oxide and titania in the presence of steam, thereby hydrolyzing the fluorine compound at a relatively low temperature, e.g. 200°-800° C., to convert the fluorine of the fluorine compound to hydrogen fluoride.
    Type: Application
    Filed: January 9, 1998
    Publication date: May 24, 2001
    Applicant: Shuichi Kanno
    Inventors: SHUICHI KANNO, TOSHIAKI ARATO, SHINZO IKEDA, TAKESHI YASUDA, HISAO YAMASHITA, SHIGERU AZUHATA, SHIN TAMATA, KAZUYOSHI IRIE
  • Patent number: 6077482
    Abstract: A treating apparatus for decomposing organohalogen compounds such as chlorofluorocarbons (CFC's), trichloroethylene, methylbromide, halon, and the like, effectively, with a high activity of catalyst, is provided. The apparatus includes a reactor in which organohalogen compounds are decomposed by contact at a temperature in a range of 200.degree..about.500.degree. C. with a catalyst which comprises titania and tungsten oxide by an atomic ratio of Ti and W in a range from 20 mol % to 95 mol % Ti and from 5 mol % to 80 mol % W, with at least the surface of the titania being covered with a porous layer of the tungsten oxide. In accordance with the present invention, organic compounds containing any of fluorine, chlorine and bromine will be decomposed with a high efficiency, and the activity of the catalyst can be maintained for a long time.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: June 20, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Shuichi Kanno, Hiroshi Kawagoshi, Akira Kato, Toshiaki Arato, Hisao Yamashita, Shigeru Azuhata, Shin Tamata
  • Patent number: 5877391
    Abstract: A method for treating a gas flow containing organohalogen compounds including the steps of contacting the gas flow with a catalyst at a temperature below 500.degree. C. in the presence of an effective amount of steam, wherein the catalyst contains titania, tungsten oxide, and silica, the Ti and W are present in the range of 20-95 mol % Ti and 5-80 mol % W based on Ti and W, and the amount of silica is in the range of 0.5-15% by weight silica to 100% by weight titania. Accordingly, the organohalogen compound can be decomposed effectively to carbon monoxide, carbon dioxide, and hydrogen halide.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: March 2, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Shuichi Kanno, Hiroshi Kawagoshi, Akira Kato, Toshiaki Arato, Hisao Yamashita, Shigeru Azuhata, Shin Tamata, Shinzo Ikeda, Takeshi Yasuda
  • Patent number: 5759504
    Abstract: A treating method for decomposing organohalogen compounds such as chlorofluorocarbons (CFC), trichloroethylene, methyl bromide, halon, and the like, effectively, with a high activity of catalyst is provided.Organohalogen compounds are decomposed by contacting at a temperature in a range of 200.degree..about.500.degree. C. with catalyst which comprises titania and tungsten oxide by an atomic ratio of Ti and W in a range from 20 mol % to 95 mol % Ti and from 5 mol % to 80 mol % W, and at least surface of the titania is covered with porous layer of tungsten oxide.In accordance with the present invention, organic compounds containing any of fluorine, chlorine, and bromine can be decomposed with a high efficiency, and the activity of the catalyst can be maintained for a long time.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: June 2, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Shuichi Kanno, Hiroshi Kawagoshi, Akira Kato, Toshiaki Arato, Hisao Yamashita, Shigeru Azuhata, Shin Tamata