Patents by Inventor Shuichi Shinagawa

Shuichi Shinagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10087533
    Abstract: A method for reducing carbon dioxide is provided. In the present method, used is an anode electrode comprises a stacked structure of a photoelectric conversion layer, a metal layer, and an InxGa1-xN layer (where 0<x?1). The InxGa1-xN layer is of i-type or n-type. The metal layer is interposed between the photoelectric conversion layer and the InxGa1-xN layer. When irradiating the anode electrode with light, a first light part included in the light is absorbed by the InxGa1-xN layer and a second light part included in the light travels through the InxGa1-xN layer. The second light part is absorbed by the photoelectric conversion layer to generate electric power in the photoelectric conversion layer. The second light part has a longer wavelength than the first light part. The carbon dioxide contained in the first electrolyte solution is reduced on the cathode electrode.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: October 2, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeyuki Sekimoto, Masahiro Deguchi, Satoshi Yotsuhashi, Hiroshi Hashiba, Yuka Yamada, Shuichi Shinagawa
  • Publication number: 20160060773
    Abstract: A method for reducing carbon dioxide is provided. In the present method, used is an anode electrode comprises a stacked structure of a photoelectric conversion layer, a metal layer, and an InxGa1-xN layer (where 0<x?1). The InxGa1-xN layer is of i-type or n-type. The metal layer is interposed between the photoelectric conversion layer and the InxGa1-xN layer. When irradiating the anode electrode with light, a first light part included in the light is absorbed by the InxGa1-xN layer and a second light part included in the light travels through the InxGa1-xN layer. The second light part is absorbed by the photoelectric conversion layer to generate electric power in the photoelectric conversion layer. The second light part has a longer wavelength than the first light part. The carbon dioxide contained in the first electrolyte solution is reduced on the cathode electrode.
    Type: Application
    Filed: July 9, 2015
    Publication date: March 3, 2016
    Inventors: TAKEYUKI SEKIMOTO, MASAHIRO DEGUCHI, SATOSHI YOTSUHASHI, HIROSHI HASHIBA, YUKA YAMADA, SHUICHI SHINAGAWA
  • Publication number: 20060183260
    Abstract: A method for manufacturing p-type nitride semiconductor comprising a semiconductor layer forming process where a low resistivity p-type nitride semiconductor layer is formed on a substrate by introducing the sources of p-type dopant, nitrogen and Group III sources on a substrate held at a temperature of 600° C. or higher and a cooling process for cooling the substrate which is bearing the p-type nitride semiconductor layer. The manufacturing method features in that the hole carrier concentration of the p-type nitride semiconductor layer decreases during the cooling process. A superior quality p-type nitride semiconductor is made available, without needing any annealing treatment after growth, by properly specifying the concentration of atmosphere gas and the cooling time.
    Type: Application
    Filed: April 3, 2006
    Publication date: August 17, 2006
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidenori Kamei, Shuichi Shinagawa, Hidemi Takeishi
  • Patent number: 7056755
    Abstract: A method for manufacturing p-type nitride semiconductor comprising a semiconductor layer forming process where a low resistivity p-type nitride semiconductor layer is formed on a substrate by introducing the sources of p-type dopant, nitrogen and Group III sources on a substrate held at a temperature of 600° C. or higher and a cooling process for cooling the substrate which is bearing the p-type nitride semiconductor layer. The manufacturing method features in that the hole carrier concentration of the p-type nitride semiconductor layer decreases during the cooling process. A superior quality p-type nitride semiconductor is made available, without needing any annealing treatment after growth, by properly specifying the concentration of atmosphere gas and the cooling time.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: June 6, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidenori Kamei, Shuichi Shinagawa, Hidemi Takeishi