Patents by Inventor Shuji Kuramitsu

Shuji Kuramitsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170029022
    Abstract: A sensor device includes a plurality of sensor elements and an output circuit in one sensor part, and a correction value calculator in an ECU, which obtains output signals from the sensor part and calculates an offset correction value based on a plurality of signal values that correspond to a detection value when a calculability condition is satisfied. The ECU also includes a control calculator that performs a calculation based on the corrected signal values that have been corrected by the offset correction value. Therefore, the offset correction value is calculated in view of an aging and an accuracy variation of the components used in the sensor device. In such manner, the detection value is appropriately corrected for the calculation.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventors: Kouichi Nakamura, Katsuhiko Hayashi, Takaharu Kozawa, Shuji Kuramitsu, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20170029016
    Abstract: A sensor device includes two sensor parts and an ECU. An output division of one of the two sensor parts stops output of an output signal when a detected internal abnormality is a first abnormality. Further, when the detected internal abnormality is a second abnormality that is different from the first abnormality, the output division controls an abnormality signal to take a value indicative of the second abnormality. An abnormality determiner determines either of a signal obtainment abnormality or the first abnormality of the sensor part when the output signal is not obtained from the one of the sensor parts, or determines the second abnormality of the one of the sensor parts when the obtained output signal includes the abnormality signal having a value indicative of the second abnormality. Such determination, thus, enables the abnormality determiner to classify an abnormality caused in the sensor parts.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventors: Takaharu Kozawa, Shuji Kuramitsu, Kouichi Nakamura, Masaya Taki, Toshimitsu Sakai, Katsuhiko Hayashi
  • Patent number: 9540035
    Abstract: A control apparatus controls a motor of an electric power steering system including: an input shaft connected to a steering member; a column shaft connected to the input shaft; a turning device that includes a rack and pinion mechanism, and turns a wheel; and the motor. The control apparatus includes a reliability computation portion that computes a reliability according to an abnormality detection state regarding at least one of a current sensor, a torque sensor, and a rotational angle sensor; a steering-shaft load estimation portion that estimates a steering shaft load using a current corresponding value, a torque corresponding value, and a rotational angle corresponding value; and a weight changing portion that changes a weighting of the current corresponding value, the torque corresponding value, or the rotational angle corresponding value according to the reliability.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 10, 2017
    Assignee: DENSO CORPORATION
    Inventor: Shuji Kuramitsu
  • Publication number: 20160362137
    Abstract: A communication system includes a sensor apparatus, which includes sensing elements and a transmission circuit, and a microcomputer, which includes a reception circuit, a difference calculator, and a differential calculator. The transmission circuit shifts a transmission time point of one of sensor signals including sensor value detected by one of the sensing elements by a predetermined period with respect to a transmission time point of another one of sensor signals including sensor value detected by another one of the sensing elements. The predetermined period is set shorter than a transmission cycle of the transmission circuit. The difference calculator calculates a difference value so that an offset error among the sensing elements is compensated or a fluctuation caused by a variation in slopes of output characteristics of the sensing elements is reduced.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Inventors: Masaya Taki, Toshimitsu Sakai, Kouichi Nakamura, Shuji Kuramitsu, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20160362129
    Abstract: A communication system includes at least one sensor apparatus including at least one sensing element and a transmission circuit, and a microcomputer including a reception circuit and a differential calculator. The sensing element detects a sensor value indicating a physical quantity of a detection target, and the transmission circuit transmits, as a digital signal, a sensor signal including information indicative of the sensor value at a predetermined transmission cycle. The reception circuit receives the sensor signal through a signal line and updates last time sensor value with present time sensor value. The differential calculator calculates, at a predetermined calculation cycle, a time differential value by performing a time differential calculation to the updated using time information provided separate from the sensor value.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Inventors: Masaya Taki, Toshimitsu Sakai, Shuji Kuramitsu, Kouichi Nakamura, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20160339946
    Abstract: A sensor device includes a sensor section having a plurality of sensor elements sensing a physical quantity regarding a magnetic flux collecting module, an output circuit generating and outputting an output signal including data signals respectively corresponding to sensing values from the sensor elements, and an ECU obtaining the output signal. The ECU includes an abnormality determiner identifying an abnormal sensor element. When at least two of the plurality of sensor sections respectively have at least one normal sensor element, a sub-sensor section transmits the output signal therefrom to the ECU at a shifted output timing from an output timing of the output signal from a main sensor section. The amount of such a shift of the output timing is shorter than one signal cycle of the output signal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Shuji Kuramitsu, Katsuhiko Hayashi, Takaharu Kozawa, Koichi Nakamura, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160339948
    Abstract: A sensor device includes a first sensor section and a second sensor section, and the first sensor section has sensor elements and an output circuit for generating and transmitting an output signal including signals that respectively correspond to sensing values from the two sensor elements, and the second sensor section has sensor elements and an output circuit for generating and transmitting an output signal including signals that respectively correspond to sensing values from the two sensor elements. The sensor device further includes an ECU that has an abnormality determiner for determining abnormality of the sensor sections, and a calculator, thereby enabling a continuation of abnormality monitoring of a normal sensor section, even when a part of the sensor sections is abnormal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Koichi Nakamura, Katsuhiko Hayashi, Takaharu Kozawa, Shuji Kuramitsu, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160339945
    Abstract: A sensor device including a first output circuit generating and outputting a first output signal that is generated as a signal sequence from a first main signal based on a detection value of a first main sensor element to a first sub signal based on a detection value of a first sub sensor element, a second output circuit generating and outputting a second output signal that is generated as a signal sequence from a second main signal based on a detection value of a second main sensor element to a second sub signal based on a detection value of a second sub sensor element, and an abnormality determiner determining abnormality of the device based on the first output signal and the second output signal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Takaharu Kozawa, Shuji Kuramitsu, Koichi Nakamura, Katsuhiko Hayashi, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160294539
    Abstract: A communication device includes: a plurality of sensors, each of which includes at least one sensor element that detects information relating to a single detection target and an output circuit that generates an output signal based on a detection signal of the sensor element and transmits the output signal; and a controller that acquires the output signal. One of the sensors transmits the output signal to the controller at an output timing that is shifted, by a predetermined period shorter than a length of one period of the output signal, from another output timing when another one of the sensors transmits the output signal.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 6, 2016
    Inventors: Takaharu Kozawa, Hideki Kabune, Toshihiro Fujita, Katsuhiko Hayashi, Kouichi Nakamura, Shuji Kuramitsu, Toshimitsu Sakai, Masaya Taki
  • Publication number: 20160241182
    Abstract: A controller controls a rotating electric machine that has a plurality of winding wire groups, by using an instruction calculator, a temperature calculator, a distributor, and an electric current control section. The instruction calculator calculates an assist instruction value regarding a drive of the machine. The machine has systems each having a combination of a winding wire group and an inverter. The distributor distributes the assist instruction value among the winding wire groups according to system temperatures, for the calculation of torque instruction values for the respective winding wire groups. In such manner, an overheat of the machine and the inverters is prevented.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 18, 2016
    Inventor: Shuji Kuramitsu
  • Publication number: 20160241183
    Abstract: A controller in an electric power steering system controls motor that assists a steering operation of a steering wheel by a driver by generating an assist torque. The controller includes an instruction calculator calculating a base assist instruction value and at least one of correction instruction values, a distributor distributing the instruction values a plurality of winding wire groups, and calculating a torque instruction value for each of the plurality of winding wire groups. Thus, the base assist instruction value and the correction instruction values are appropriately distributed to each of the plurality of winding wire groups, for an appropriate distribution of the instruction values among the plurality of winding wire groups for generating the assist torque.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 18, 2016
    Inventor: Shuji Kuramitsu
  • Publication number: 20160159389
    Abstract: A control apparatus controls a motor of an electric power steering system including: an input shaft connected to a steering member; a column shaft connected to the input shaft; a turning device that includes a rack and pinion mechanism, and turns a wheel; and the motor. The control apparatus includes a reliability computation portion that computes a reliability according to an abnormality detection state regarding at least one of a current sensor, a torque sensor, and a rotational angle sensor; a steering-shaft load estimation portion that estimates a steering shaft load, a torque corresponding value, and a rotational angle corresponding value; and a weight changing portion that changes a weighting of the current corresponding value, the torque corresponding value, or the rotational angle corresponding value according to the reliability.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 9, 2016
    Inventor: Shuji Kuramitsu
  • Patent number: 9352771
    Abstract: An electric power steering control device for controlling an assist torque output by a motor includes: a steering wheel of a vehicle; a torsion bar between the steering wheel and a column shaft; a torque sensor that detects a steering torque; a turning device that converts a rotation motion of the column shaft into a reciprocating motion of a rack that turns a wheel of the vehicle; the motor; a motor rotation angle sensor that detects a rotation angle of the motor; a steering shaft load estimation unit that estimates a steering shaft load; and a basic assist control unit that calculates a basic assist torque command value. The steering shaft load estimation unit estimates the steering shaft load based on the steering torque, a steering angular velocity or a steering angle acceleration, and a previous value of the basic assist torque command value.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 31, 2016
    Assignee: DENSO CORPORATION
    Inventor: Shuji Kuramitsu
  • Publication number: 20150203148
    Abstract: An electric power steering control device for controlling an assist torque output by a motor includes: a steering wheel of a vehicle; a torsion bar between the steering wheel and a column shaft; a torque sensor that detects a steering torque; a turning device that converts a rotation motion of the column shaft into a reciprocating motion of a rack that turns a wheel of the vehicle; the motor; a motor rotation angle sensor that detects a rotation angle of the motor; a steering shaft load estimation unit that estimates a steering shaft load; and a basic assist control unit that calculates a basic assist torque command value. The steering shaft load estimation unit estimates the steering shaft load based on the steering torque, a steering angular velocity or a steering angle acceleration, and a previous value of the basic assist torque command value.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 23, 2015
    Inventor: Shuji KURAMITSU
  • Patent number: 8140222
    Abstract: A control unit estimates reverse transfer torque transferred from tires to a steering wheel and calculates an assist gain based on the reverse transfer torque. The control unit calculates basic assist torque demand by multiplying torsion torque detected by a torque sensor by the assist gain. The control unit further calculates assist torque command by adding compensation for stabilization. Since the assist gain is determined based on the reverse transfer torque, actual assist torque is generated in accordance with the force transferred from the road surface. Thus, a driver can operate the steering wheel while feeling the force from the road surface.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 20, 2012
    Assignee: Denso Corporation
    Inventors: Daiji Watanabe, Tomoyuki Hori, Motoaki Kataoka, Shuji Kuramitsu, Takehito Fujii
  • Publication number: 20090099731
    Abstract: A control unit estimates reverse transfer torque transferred from tires to a steering wheel and calculates an assist gain based on the reverse transfer torque. The control unit calculates basic assist torque demand by multiplying torsion torque detected by a torque sensor by the assist gain. The control unit further calculates assist torque command by adding compensation for stabilization. Since the assist gain is determined based on the reverse transfer torque, actual assist torque is generated in accordance with the force transferred from the road surface. Thus, a driver can operate the steering wheel while feeling the force from the road surface.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 16, 2009
    Applicant: DENSO CORPORATION
    Inventors: Daiji Watanabe, Tomoyuki Hori, Motoaki Kataoka, Shuji Kuramitsu, Takehito Fujii