Patents by Inventor Shuji Nakamura

Shuji Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220239068
    Abstract: Vertical Cavity Surface Emitting Laser (VCSEL) configurations are disclosed. In a first example, the VCSEL includes a III-Nitride active region between a p-type III-Nitride layer and an n-type III-Nitride layer; and a curved minor on or above the p-type III-Nitride layer. The curved mirror can be formed in a III-Nitride layer or a Transparent Oxide (TO) material and enables the formation of a long VCSEL cavity that improves VCSEL lifetime, VCSEL output power, VCSEL power efficiency and VCSEL reliability. In a second example, the VCSEL has an active region with a high indium content. In a third example, the VCSEL is transparent.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 28, 2022
    Applicant: The Regents of the University of California
    Inventors: Jared Kearns, Daniel A. Cohen, Joonho Back, Nathan Palmquist, Tal Margalith, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20220181513
    Abstract: A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 9, 2022
    Applicant: The Regents of the University of California
    Inventors: Erin C. Young, Benjamin P. Yonkee, John T. Leonard, Tal Margalith, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 11348908
    Abstract: A flip chip III-Nitride LED which utilizes a dielectric coating backed by a metallic reflector (e.g., aluminum or silver). High reflectivity and low resistance contacts for optoelectronic devices. Low ESD rating optoelectronic devices. A VCSEL comprising a tunnel junction for current and optical confinement.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 31, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Benjamin P. Yonkee, Erin C. Young, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 11317790
    Abstract: A flexible tube insertion device includes a flexible tube section, at least one variable stiffness unit, at least one state detector, and a stiffness controller. The flexible tube section is segmented along an axial direction into segments and configured to be inserted into an insertion target. The variable stiffness unit is configured to vary bending stiffness of the flexible tube section in units at least one segment. The state detector is configured to detect information relating to shape information of the flexible tube section. The stiffness controller is configured to cause the variable stiffness unit to reduce bending stiffness of a portion of the flexible tube section including a place where the flexible tube section is easy to bend in units of at least one segment based on the shape information.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: OLYMPUS CORPORATION
    Inventor: Shuji Nakamura
  • Patent number: 11291354
    Abstract: A flexible tube insertion apparatus includes: a flexible tube to be inserted into an insertion target body; a state detector to detect state information of the flexible tube relating to a shape of the flexible tube; and a bent formation determining section to determine whether first and second bent portions bent in different directions are formed on the flexible tube based on the state information. The flexible tube insertion apparatus further includes a shape changing section, arranged in the flexible tube, to actively change the shape of the flexible tube so that an angle at which a first virtual flat plane on which the first bent portion is formed and a second virtual flat plane on which the second bent portion is formed intersect becomes smaller, when the bent formation determining section determines that the first and second bent portions are formed on the flexible tube.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 5, 2022
    Assignee: OLYMPUS CORPORATION
    Inventors: Takeshi Takahashi, Ryo Tezuka, Shuji Nakamura
  • Patent number: 11217722
    Abstract: A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 4, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Erin C. Young, Benjamin P. Yonkee, John T. Leonard, Tal Margalith, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 11192121
    Abstract: A blood component separator (1) includes a blood storage vessel (20) that includes a first storage part (21) and a second storage part (22), a slider (30) movable from the first storage part to the second storage part, and a flow path (40f) for communicating an inside and an outside of the storage vessel. When the slider is in the first storage part, the first storage part and the second storage part are in communication with each other. When the slider is inserted into the second storage part, a liquid-tight seal is formed between the slider and the inner peripheral surface of the second storage part and the communication between the first storage part and the second storage part is blocked by the slider. The slider is movable in the second storage part while maintaining the liquid-tight seal between the slider and the inner peripheral surface of the second storage part.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 7, 2021
    Assignee: TRANSELL Co., Ltd.
    Inventors: Nariyuki Hamada, Shuji Nakamura, Katsuyuki Sado, Kenta Kaneda
  • Publication number: 20210369084
    Abstract: A flexible tube insertion apparatus includes an insertion section inserted into an insertion target conduit, a rigidity variable member disposed inside the insertion section and capable of changing rigidity, and a binding member configured to bind a proximal end portion of the rigidity variable member to be capable of changing a pressing force applied to an outer circumferential surface of the proximal end portion.
    Type: Application
    Filed: August 18, 2021
    Publication date: December 2, 2021
    Applicant: OLYMPUS CORPORATION
    Inventors: Shuji NAKAMURA, Takeshi TAKAHASHI
  • Patent number: 11164997
    Abstract: A III-Nitride LED which utilizes n-type III-Nitride layers for current spreading on both sides of the device. A multilayer dielectric coating is used underneath the wire bond pads, both LED contacts are deposited in one step, and the p-side wire bond pad is moved off of the mesa. The LED has a wall plug efficiency or External Quantum Efficiency (EQE) over 70%, a fractional EQE droop of less than 7% at 20 A/cm2 drive current and less than 15% at 35 A/cm2 drive current. The LEDs can be patterned into an LED array and each LED can have an edge dimension of between 5 and 50 ?m. The LED emission wavelength can be below 400 nm and aluminum can be added to the n-type III-Nitride layers such that the bandgap of the n-type III-nitride layers is larger than the LED emission photon energy.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 2, 2021
    Assignee: THE REGENTS OF THE UNIVERISTY OF CALIFORNIA
    Inventors: Benjamin P. Yonkee, Erin C. Young, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20210210657
    Abstract: A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 8, 2021
    Applicants: The Regents of the University of California
    Inventors: Tetsuo Fujii, Yan Gao, Evelyn L. Hu, Shuji Nakamura
  • Patent number: 11045073
    Abstract: A flexible tube insertion apparatus includes an insertion section, a stiffness variable unit that changes a bending stiffness of the insertion section and a detection unit that detects an advance that is a movement toward a distal end of the insertion section and a retreat that is a movement toward a proximal end of the insertion section. A controller controls the stiffness variable unit to change the bending stiffness of the insertion section to a first bending stiffness when the detection unit has detected the advance of the insertion section, and that controls the stiffness variable unit to change the bending stiffness of the insertion section to a second bending stiffness higher than the first bending when the detection unit has detected the retreat of the insertion section.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: June 29, 2021
    Assignee: OLYMPUS CORPORATION
    Inventors: Yuichi Ikeda, Shuji Nakamura
  • Patent number: 11011329
    Abstract: A key switch device includes: an operation member to be depressed; a switch disposed below the operation member; a reaction force generating member that is provided between the operation member and the switch, performs elastic buckling deformation by depression of the operation member, gives a reaction force according to the elastic buckling deformation to the operation member; and a depression member that is provided between the operation member and the switch, and depresses the switch; wherein the reaction force generating member includes a supporter that supports the depression member.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: May 18, 2021
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Takeshi Nishino, Shuji Nakamura, Akihiko Takemae, Tamotsu Koike
  • Patent number: 11000180
    Abstract: A flexible tube insertion apparatus includes an insertion section, one or more stiffness variable portion, and a detection unit. The flexible tube insertion apparatus includes a bending information calculator, a main determiner, and a controller that performs control to increase a stiffness of the stiffness variable portion provided in a segment located in a bent part, when the main determiner determines that the bent part is present and the segment provided in the stiffness variable portion is located in the bent part.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: May 11, 2021
    Assignee: OLYMPUS CORPORATION
    Inventors: Takeshi Takahashi, Shuji Nakamura
  • Patent number: 10985285
    Abstract: A physical vapor deposition (e.g., sputter deposition) method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and electron cyclotron resonance (ECR) sputtering to grow one or more tunnel junctions. In another method, the surface of the p-type layer is treated before deposition of the tunnel junction on the p-type layer. In yet another method, the whole device (including tunnel junction) is grown using MOCVD and the p-type layers of the III-nitride material are reactivated by lateral diffusion of hydrogen through mesa sidewalls in the III-nitride material, with one or more lateral dimensions of the mesa that are less than or equal to about 200 ?m. A flip chip display device is also disclosed.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 20, 2021
    Assignee: The Regents of the University of California
    Inventors: Benjamin P. Yonkee, Asad J. Mughal, David Hwang, Erin C. Young, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 10985293
    Abstract: A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 20, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tetsuo Fujii, Yan Gao, Evelyn L. Hu, Shuji Nakamura
  • Publication number: 20210104504
    Abstract: A flip chip III-Nitride LED which utilizes a dielectric coating backed by a metallic reflector (e.g., aluminum or silver). High reflectivity and low resistance contacts for optoelectronic devices. Low ESD rating optoelectronic devices. A VCSEL comprising a tunnel junction for current and optical confinement.
    Type: Application
    Filed: August 17, 2017
    Publication date: April 8, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Benjamin P. Yonkee, Erin C. Young, Charles Forman, John T. Leonard, SeungGeun Lee, Dan Cohen, Robert M. Farrell, Michael Iza, Burhan Saifaddin, Abdullah Almogbel, Humberto Foronda, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20200390315
    Abstract: A flexible tube insertion apparatus includes a flexible insertion section to be inserted into a subject and bent by a reaction force from the subject, a variable stiffness unit provided in the insertion section and configured to change a stiffness of the insertion section, and a shape detector configured to detect a bent shape of the insertion section. The apparatus further includes a force specifier configured to acquire a distribution of the reaction force on a distal side from a predetermined point in the bent shape and specify a maximum reaction force position, and a stiffness controller configured to control a stiffness of the variable stiffness unit so as to increase a stiffness of the variable stiffness unit between the predetermined point and the maximum reaction force position.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Applicant: OLYMPUS CORPORATION
    Inventors: Shuji NAKAMURA, Takeshi TAKAHASHI, Yuichi IKEDA
  • Patent number: 10863884
    Abstract: One embodiment of the present invention is a flexible tube insertion apparatus including a flexible insertion section to be inserted into a subject. The flexible tube insertion apparatus includes an insertion section state detecting device that detects a state of the insertion section necessary for insertion prediction as detection information when the insertion section is inserted into a subject, and at least one circuit that predicts, using the detection information detected by the insertion section state detecting device, a propulsion state of a distal end of the insertion section and a state of the subject when the insertion section is further inserted from the state of the insertion section, and produces an output based on the prediction.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 15, 2020
    Assignee: OLYMPUS CORPORATION
    Inventor: Shuji Nakamura
  • Publication number: 20200335663
    Abstract: A III-nitride optoelectronic device includes at least one n-type layer, an active region grown on or above the n-type layer, at least one p-type layer grown on or above the active region, and a tunnel junction grown on or above the p-type layer. A conductive oxide may be wafer bonded on or above the tunnel junction, wherein the conductive oxide comprises a transparent conductor and may contain light extraction features on its non-bonded face. The tunnel junction also enables monolithic incorporation of electrically-injected and optically-pumped III-nitride layers, wherein the optically-pumped III-nitride layers comprise high-indium-content III-nitride layers formed as quantum wells (QWs) that are grown on or above the tunnel junction. The optically-pumped high-indium-content III-nitride layers emit light at a longer wavelength than the electrically-injected III-nitride layers.
    Type: Application
    Filed: February 6, 2017
    Publication date: October 22, 2020
    Applicant: The Regents of the University of California
    Inventors: Asad J. Mughal, Stacy J. Kowsz, Robert M. Farrell, Benjamin P. Yonkee, Erin C. Young, Christopher D. Pynn, Tal Margalith, James S. Speck, Shuji Nakamura, Steven P. DenBaars
  • Publication number: 20200259314
    Abstract: A sensing apparatus, an illumination system, and a data communication system including a Vertical Cavity Surface Emitting Laser (VCSEL) or VCSEL array.
    Type: Application
    Filed: October 31, 2018
    Publication date: August 13, 2020
    Applicant: The Regents of the University of California
    Inventors: Jared Kearns, Charles Forman, Dan Cohen, Kenneth S. Kosik, Shuji Nakamura