Patents by Inventor Shul-Kee Kim

Shul-Kee Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160028115
    Abstract: Provided is a non-aqueous electrolyte solution including a non-aqueous organic solvent, an imide-based lithium salt, and at least one additive selected from the group consisting of lithium difluoro bis(oxalato)phosphate (LiDFOP), (trimethylsilyl)propyl phosphate (TMSPa), 1,3-propene sultone (PRS), and ethylene sulfate (ESa), as an electrolyte solution additive. According to the electrolyte solution additive for a lithium secondary battery of the present invention, the electrolyte solution additive may improve output characteristics at high and low temperatures and may prevent a swelling phenomenon by suppressing the decomposition of PF6? on the surface of a cathode, which may occur during a high-temperature cycle of a lithium secondary battery including the electrolyte solution additive, and preventing an oxidation reaction of an electrolyte solution.
    Type: Application
    Filed: October 31, 2014
    Publication date: January 28, 2016
    Applicant: LG Chem, Ltd.
    Inventors: Gwang Yeon Kim, Chul Haeng Lee, Doo Kyung Yang, Young Min Lim, Shul Kee Kim, Yu Ha An, Jin Hyun Park
  • Patent number: 9178197
    Abstract: The present invention provides a lithium secondary battery, comprising a cathode, an anode, a non-aqueous solution containing a lithium salt and an organic solvent, and a safety vent for removing increased internal pressure, the non-aqueous solution having the prescribed composition and the safety vent having the prescribed operational characteristics. The lithium secondary battery of the present invention can ensure its safety even when overcharged.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Yong-Gon Lee, Seung-Woo Chu, Shul-Kee Kim, Hyun-Yeong Lee, Jae-Deok Jeon
  • Publication number: 20140349198
    Abstract: Provided are a non-aqueous electrolyte solution, which includes a non-aqueous organic solvent including propylene carbonate (PC) and an ester-based solvent, and lithium bis(fluorosulfonyl)imide (LiFSI), and a lithium secondary battery including the non-aqueous electrolyte solution. According to the non-aqueous electrolyte solution of the present invention, since a robust solid electrolyte interface (SEI) may be formed on an anode during initial charge of a lithium secondary battery including the non-aqueous electrolyte solution, high-temperature cycle characteristics and capacity characteristics after high-temperature storage as well as low-temperature, room temperature, and high-temperature output characteristics may be simultaneously improved.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 27, 2014
    Inventors: Young Min Lim, Chul Haeng Lee, Doo Kyung Yang, Shul Kee Kim
  • Publication number: 20140342241
    Abstract: Provided are a non-aqueous electrolyte solution, which includes a non-aqueous organic solvent including propylene carbonate (PC) and ethylene carbonate (EC), and lithium bis(fluorosulfonyl)imide (LiFSI), and a lithium secondary battery including the non-aqueous electrolyte solution. The lithium secondary battery of the present invention may improve low-temperature and room temperature output characteristics, high-temperature and room temperature cycle characteristics, and capacity characteristics after high-temperature storage by forming a robust solid electrolyte interface (SEI) on an anode during initial charge of the lithium secondary battery.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Young Min Lim, Chul Haeng Lee, Doo Kyung Yang, Shul Kee Kim
  • Publication number: 20140093758
    Abstract: The present invention provides a lithium secondary battery, comprising a cathode, an anode, a non-aqueous solution containing a lithium salt and an organic solvent, and a safety vent for removing increased internal pressure, the non-aqueous solution having the prescribed composition and the safety vent having the prescribed operational characteristics. The lithium secondary battery of the present invention can ensure its safety even when overcharged.
    Type: Application
    Filed: November 26, 2013
    Publication date: April 3, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Yong-Gon Lee, Seung-Woo Chu, Shul-Kee Kim, Hyun-Yeong Lee, Jae-Deok Jeon
  • Patent number: 8361660
    Abstract: Disclosed are a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery comprising the same. The non-aqueous electrolyte solution for a lithium secondary battery may include difluorotoluene having a lowest oxidation potential among components of the non-aqueous electrolyte solution. The lithium secondary battery may have improvement in basic performance including high rate charge/discharge characteristics, cycle life characteristics, and the like, and may remarkably reduce swelling caused by decomposition of an electrolyte solution under high voltage conditions such as overcharge.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: January 29, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Yong-Gon Lee, Seung-Woo Chu, Shul-Kee Kim, Hyun-Yeong Lee, Jae-Deok Jeon
  • Publication number: 20110244339
    Abstract: Disclosed are a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery comprising the same. The non-aqueous electrolyte solution for a lithium secondary battery may include difluorotoluene having a lowest oxidation potential among components of the non-aqueous electrolyte solution. The lithium secondary battery may have improvement in basic performance including high rate charge/discharge characteristics, cycle life characteristics, and the like, and may remarkably reduce swelling caused by decomposition of an electrolyte solution under high voltage conditions such as overcharge.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 6, 2011
    Inventors: Jong-Ho Jeon, Yong-Gon Lee, Seung-Woo Chu, Shul-Kee Kim, Hyun-Yeong Lee, Jae-Deok Jeon