Patents by Inventor Si-Young Choi

Si-Young Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8008698
    Abstract: A semiconductor memory device may include a semiconductor substrate with an active region extending in a first direction parallel with respect to a surface of the semiconductor substrate. A pillar may extend from the active region in a direction perpendicular with respect to the surface of the semiconductor substrate with the pillar including a channel region on a sidewall thereof. A gate insulating layer may surround a sidewall of the pillar, and a word line may extend in a second direction parallel with respect to the surface of the semiconductor substrate. Moreover, the first and second directions may be different, and the word line may surround the sidewall of the pillar so that the gate insulating layer is between the word line and the pillar. A contact plug may be electrically connected to the active region and spaced apart from the word line, and a bit line may be electrically connected to the active region through the contact plug with the plurality of bit lines extending in the first direction.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-hyung Lee, Sun-ghil Lee, Si-young Choi, Byeong-chan Lee, Seung-hun Lee
  • Publication number: 20110165295
    Abstract: Provided are a cooker and a method for controlling the same. Levels driven by a plurality of heat sources are controlled by input driving levels of all the heat sources received by an input unit. Accordingly, there is an advantage in that foods are more swiftly cooked by the plurality of heat sources.
    Type: Application
    Filed: April 3, 2009
    Publication date: July 7, 2011
    Inventors: Sang-Ryul Lee, Kyu-Yong Kim, Jae-Myung Chin, Dong-Han Kim, Si-Young Choi, Sung-Ho Choi
  • Patent number: 7973355
    Abstract: A nonvolatile memory device may include: a tunnel insulating layer on a semiconductor substrate; a charge storage layer on the tunnel insulating layer; a blocking insulating layer on the charge storage layer; and a control gate electrode on the blocking insulating layer. The tunnel insulating layer may include a first tunnel insulating layer and a second tunnel insulating layer. The first tunnel insulating layer and the second tunnel insulating layer may be sequentially stacked on the semiconductor substrate. The second tunnel insulating layer may have a larger band gap than the first tunnel insulating layer. A method for fabricating a nonvolatile memory device may include: forming a tunnel insulating layer on a semiconductor substrate; forming a charge storage layer on the tunnel insulating layer; forming a blocking insulating layer on the charge storage layer; and forming a control gate electrode on the blocking insulating layer.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jae Baik, Hong-Suk Kim, Si-Young Choi, Ki-Hyun Hwang, Sang-Jin Hyun
  • Publication number: 20110147378
    Abstract: A microwave oven includes a cavity having a cooking chamber; a magnetron oscillating microwave radiation used for cooking food in the cooking chamber; and a plurality of radiation openings through which the microwave radiation is radiated into the cooking chamber, each of the radiation openings having a length in a direction where the microwave radiation is guided by a waveguide, the length being greater or less than ?/4.
    Type: Application
    Filed: April 1, 2009
    Publication date: June 23, 2011
    Inventors: Sang-Ryul Lee, Kyu-Young Kim, Jae-Myung Chin, Dong-Han Kim, Si-Young Choi, Sung-Ho Choi
  • Publication number: 20110127530
    Abstract: A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 2, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: YONG-HOON SON, Si-young Choi, Jong-wook Lee
  • Publication number: 20110114474
    Abstract: This invention relates to a method and apparatus for deposition of a diffused thin film, useful in the fabrication of semiconductors and for the surface DC-Bias coating of various tools. In order to coat the surface of a treatment object, such as semiconductors, various molded products, or various tools, with a thin film, one or more process factors selected from among a bias voltage, a gas quantity, an arc power, and a sputtering power are continuously and variably adjusted, whereby the composition ratio of the thin film which is formed on the surface of the treatment object not through a chemical reaction but through a physical method is continuously varied, thus manufacturing a thin film having high hardness. The composition ratio of the thin film to be deposited is selected depending on the end use thereof, thereby depositing the thin film having superior wear resistance, impact resistance, and heat resistance.
    Type: Application
    Filed: November 22, 2007
    Publication date: May 19, 2011
    Inventors: Sang-Youl Bae, Si-Young Choi, Sung-Youp Chung, Jung-Hyun Choi
  • Patent number: 7910421
    Abstract: Provided is a method of manufacturing a semiconductor device, in which the thickness of a gate insulating layer of a CMOS device can be controlled. The method can include selectively injecting fluorine (F) into a first region on a substrate and avoiding injecting the fluorine (F) into a second region on the substrate. A first gate insulating layer is formed of oxynitride layers on the first and second regions to have first and second thicknesses, respectively, where the first thickness is less than the second thickness. A second gate insulating layer is formed on the first gate insulating layer and a gate electrode pattern is formed on the second gate insulating layer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jin Hyun, Si-young Choi, In-sang Jeom, Gab-jin Nam, Sang-bom Kang, Sug-hun Hong
  • Publication number: 20110049135
    Abstract: A microwave oven is provided. A reinforcing part is provided to a multi-hole part for transferring the heat of a heater to a cooking chamber. This prevents deformation of the multi-hole part due to the heat of the heater.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 3, 2011
    Applicant: LG Electronics Inc.
    Inventors: Sung-Ho Choi, Kyu-Young Kim, Jae-Myung Chin, Sang-Ryul Lee, Dong-Han Kim, Si-Young Choi
  • Patent number: 7888246
    Abstract: A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-hoon Son, Si-young Choi, Jong-wook Lee
  • Publication number: 20110017729
    Abstract: A microwave oven is provided. A component generating relatively high temperature heat and a component generating a relatively low temperature heat are cooled by airflow divided and provided by a cooling part, thereby improving operation reliability and durability of a product.
    Type: Application
    Filed: November 17, 2008
    Publication date: January 27, 2011
    Inventors: Sung-Ho Choi, Kyu-Young Kim, Jae-Myung Chin, Sang-Ryul Lee, Dong-Han Kim, Si-Young Choi
  • Patent number: 7871897
    Abstract: A mask pattern is formed on a semiconductor substrate in which a cell region, a PMOS region, and an NMOS region are defined. Trenches are formed in the cell region, the PMOS region, and the NMOS region. A sidewall oxide layer and a protection layer are formed in the trenches, and a portion of the protection layer in the PMOS region is removed. A first device isolation insulating layer is formed on the substrate, filling the trenches. Portions of the first device isolation insulating layer are removed to expose the mask pattern and the trenches of the cell region and the NMOS region and to leave a portion of the first device isolation insulating layer in the trench in the PMOS region. A liner is formed on the portion of the first device isolation region in the trench in the PMOS region and conforming to sidewalls of the trenches in the cell region and the NMOS region. A second device isolation insulating layer is formed on the substrate, filling the trenches in the cell region and the NMOS region.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-woon Shin, Soo-jin Hong, Guk-hyon Yon, Si-young Choi, Sun-ghil Lee
  • FAN
    Publication number: 20110008161
    Abstract: Provided is a fan of a microwave oven. The fan, discharging air in two directions, cools a plurality of components. Thus, the components are cooled with more simple configuration.
    Type: Application
    Filed: November 17, 2008
    Publication date: January 13, 2011
    Applicant: LG ELECTRONICS INC.
    Inventors: Sung-Ho Choi, Kyu-Young Kim, Jae-Myung Chin, Sang-Ryul Lee, Dong-Han Kim, Si-Young Choi
  • Publication number: 20110006056
    Abstract: A microwave oven is provided. A barrier member prevents airflow provided by a fan assembly from being introduced again to the fan assembly. A separation member divides the airflow provided by the fan assembly to cool a first component and a second component. Thus, the components are efficiently cooled.
    Type: Application
    Filed: November 20, 2008
    Publication date: January 13, 2011
    Inventors: Sung-Ho Choi, Kyu-Young Kim, Jae-Myung Chin, Sang-Ryul Lee, Dong-Han Kim, Si-Young Choi
  • Publication number: 20100330753
    Abstract: Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Inventors: Pil-Kyu Kang, Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee, Byeong-Chan Lee, InSoo Jung
  • Patent number: 7842566
    Abstract: A FinFET may include a semiconductor fin having a top surface and a sidewall having different crystal planes. A gate dielectric layer on the top surface and on the sidewall has different thicknesses. A gate electrode is formed on the gate dielectric layer across the top surface and sidewall of the semiconductor fin.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Sun-Ghil Lee, Jong-Ryeol Yoo, Si-Young Choi
  • Patent number: 7816735
    Abstract: Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee, Byeong-Chan Lee, InSoo Jung
  • Patent number: 7807543
    Abstract: A semiconductor device is manufactured by forming trenches in a substrate and selectively performing Plasma Ion Immersion Implantation and Deposition (PIIID) on a subset of the trenches in the substrate. The PIIID may be performed on only a portion of a surface of at least one of the trenches in the substrate. Semiconductor devices can include a semiconductor substrate having first, second and third trenches therein, and an oxide liner layer that fully lines the first trenches, that does not line the second trenches and that partially lines the third trenches.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-woon Shin, Tai-su Park, Si-young Choi, Soo-jin Hong, Mi-jin Kim
  • Publication number: 20100248465
    Abstract: Methods of fabricating a silicon oxide layer using an inorganic silicon precursor and methods of fabricating a semiconductor device using the same are provided. The methods of fabricating a semiconductor device include forming a tunnel insulating layer and a charge storage layer on a substrate; forming a dielectric layer structure on the charge storage layer using an atomic layer deposition (ALD) method, the dielectric layer structure including a first dielectric layer formed of silicon oxide, a second dielectric layer on the first dielectric layer formed of a material different from the material forming the first dielectric layer, and a third dielectric layer formed of the silicon oxide on the second dielectric layer; and forming a control gate on the dielectric layer structure.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Inventors: In-Sun Yi, Ki-Hyun Hwang, Jin-Tae Noh, Jae-Young Ahn, Si-Young Choi
  • Publication number: 20100240197
    Abstract: Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-bum KIM, Young-pil KIM, Si-young CHOI, Byeong-chan LEE, Jong-wook LEE
  • Patent number: 7799639
    Abstract: Fabrication of a nonvolatile memory device includes sequentially forming a tunnel oxide layer, a first conductive layer, and a nitride layer on a semiconductor substrate. A stacked pattern is formed from the tunnel oxide layer, the first conductive layer, and the nitride layer and a trench is formed in the semiconductor substrate adjacent to the stacked pattern. An oxidation process is performed to form a sidewall oxide layer on a sidewall of the trench and the first conductive layer. Chlorine is introduced into at least a portion of the stacked pattern subjected to the oxidation process. Introducing Cl into the stacked pattern may at least partially cure defects that are caused therein during fabrication of the structure.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jin Noh, Si-Young Choi, Bon-young Koo, Ki-hyun Hwang, Chul-sung Kim, Sung-kweon Baek