Patents by Inventor Sidney P. White

Sidney P. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9771531
    Abstract: An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 26, 2017
    Inventors: Renus C. Kelfkens, Wayne W. Simmons, Douglas S. Jack, Jerrod Wayne Hohman, Sidney P. White
  • Patent number: 9663363
    Abstract: A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: May 30, 2017
    Assignee: Sundrop Fuels, Inc.
    Inventors: Wayne W. Simmons, Sidney P. White, Christopher Perkins
  • Publication number: 20170137284
    Abstract: A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Wayne W. Simmons, Sidney P. White, Christopher Perkins
  • Publication number: 20160152905
    Abstract: An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
    Type: Application
    Filed: November 25, 2015
    Publication date: June 2, 2016
    Inventors: Renus C. Kelfkens, Wayne W. Simmons, Douglas S. Jack, Jerrod Wayne Hohman, Sidney P. White
  • Publication number: 20130247448
    Abstract: Generation of a liquid fuel product in an integrated multiple zone plant is discussed. Syngas components are supplied to a methanol (CH3OH) synthesis reactor from outputs of a first zone containing a torrefaction unit and a second zone containing a biomass gasifier that are combined in parallel and that thermally decompose biomass at different operating temperatures. Char particles of the biomass generated in the first zone are fed to the biomass gasifier in the second zone. Gasoline is produced via a methanol to gasoline process in a third zone, which receives its methanol derived from the syngas components fed to the methanol synthesis reactor. The gasoline derived from biomass is blended with condensable volatile materials including C5+ hydrocarbons collected during the pyrolyzation of the biomass in the torrefaction unit in the first zone in order to increase an octane rating of the blended gasoline.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: SUNDROP FUELS, INC.
    Inventors: Robert S. Ampulski, Timothy E. Laska, John T. Turner, Sidney P. White
  • Publication number: 20120181483
    Abstract: A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: SUNDROP FUELS, INC.
    Inventors: Wayne W. Simmons, Sidney P. White, Christopher Perkins
  • Patent number: 6534030
    Abstract: A process for producing ammonium thiosulfate by contacting a feed gas containing hydrogen sulfide and ammonia with an aqueous absorbing stream containing ammonium sulfite and ammonium bisulfite to form an ammonium thiosulfate-containing solution; the absorption being controlled by monitoring the oxidation reduction potential of the absorbing stream and varying the feed rates in response to the oxidation reduction potential measurements. An ammonium bisulfide-containing aqueous stream is contacted with and absorbs sulfur dioxide to form an aqueous stream containing the ammonium sulfite and ammonium bisulfite reagents. This sulfite/bisulfite-containing stream is combined with the ammonium thiosulfate-containing solution in a vessel to produce a combined solution. A portion of the combined solution is recycled back to contact the feed gas and ammonium thiosulfate is recovered from the remaining portion of the combined solution.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: March 18, 2003
    Assignee: El Paso Merchant Energy Petroleum Company
    Inventors: Mark C. Anderson, Sidney P. White, Ronald E. Shafer
  • Publication number: 20020131927
    Abstract: A process for producing ammonium thiosulfate wherein in a first reaction zone a feed gas mixture containing hydrogen sulfide and ammonia is contacted with an aqueous absorbing stream containing ammonium thiosulfite, ammonium bisulfite, and ammonium sulfite under conditions to limit conversion of sulfite to thiosulfate and produce an ammonia-rich absorbing stream, the unreacted hydrogen sulfide being rejected from the ammonia-rich absorbing stream, sulfur dioxide from a sulfur dioxide-containing gas stream being absorbed in the ammonia-rich absorbing stream in the absence of any substantial quantity of hydrogen sulfide, the ammonia-rich absorbing stream containing the sulfur dioxide being at least partially transferred to the first reaction zone, an aqueous product stream of ammonium thiosulfate being recovered.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Inventors: Mark C. Anderson, Sidney P. White, Ronald E. Shafer