Patents by Inventor Simon C. Weston

Simon C. Weston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891407
    Abstract: Provided herein are methods of novel methods of synthesizing a metal-organic framework system by vapor-phase appending of a plurality of ligands appended to a metal-organic framework. Also, provided are methods of recycling metal-organic framework systems by detaching the ligand and re-appending the same ligand or appending a different ligand to the metal-organic framework to provide a recycled or repurposed metal-organic framework system.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 6, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Carter W. Abney, Joseph M. Falkowski, Mary S. Abdulkarim, Anna C. Ivashko, Julie J. Seo, Aaron W. Peters, Matthew T. Kapelewski, Gerardo J. Majano Sanchez, Wesley Sattler, Simon C. Weston
  • Patent number: 11872537
    Abstract: The present application relates to absorbents comprising tetraamine ligands grafted onto metal-organic frameworks and a method for using same for CO2 capture from fossil fuel combustion sources to reduce emissions. In particular, this application relates to capturing >90% by volume, preferable >99% by volume, CO2 emissions such that the emissions are negative, essentially removing CO2 from the combustion air.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: January 16, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventor: Simon C. Weston
  • Publication number: 20230159575
    Abstract: Methods are provided for appending amines to metal organic framework (MOF) compositions. In some aspects, the methods can allow for appending of amines in the solution or synthesis solution used for synthesizing a MOF. In such aspects, an amine-appended MOF can be formed without having to first separate and dry the underlying non-amine-appended MOF composition. In other aspects, amines can be appended to an existing MOF composition by exposing the MOF to a suitable amine in a protic solvent, such as water or an alcohol.
    Type: Application
    Filed: November 22, 2022
    Publication date: May 25, 2023
    Inventors: Carter W. Abney, Julie J. Seo, Wenying Quan, William J. Koros, Ryan P. Lively, Aaron W. Peters, Anna C. Ivashko, Matthew T. Kapelewski, Simon C. Weston
  • Publication number: 20220370950
    Abstract: Contactor structures are provided that can allow for improved heat management while reducing or minimizing the potential for contamination of process gas streams with heat transfer fluids. The contactor structures can include one or more sets of flow channels for process gas flows, such as gas flows introduced to allow adsorption of components from a gas stream or gas flows introduced to facilitate desorption of previously adsorbed components into a purge gas stream. The process gas flow channels can correspond to flow channels defined by a structural material of unitary structure. The unitary structure can correspond to the entire contactor, or the unitary structure can correspond to a monolith that forms a portion of the contactor. The contactor structures can also include one or more sets of flow channels for heat transfer fluids. The heat transfer flow channels can also be defined by the structural material of a unitary structure.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, Ryan P. Lively, Matthew J. Realff, William J. Koros, Wenying Quan, Fengyi Zhang, Dong Hwi Jeong, Seongbin Ga, Stephen J.A. DeWitt, Yang Liu, Hannah E. Holmes
  • Publication number: 20220370992
    Abstract: Metal-organic framework materials (MOFs) are highly porous entities comprising a multidentate organic ligand coordinated to multiple metal centers. MOFs having ambient condition stability may comprise a plurality of metal clusters comprising one or more M4O clusters (M is a metal), and a plurality of 4-pyrazolecarboxylate ligands coordinated to the plurality of metal clusters to define an at least partially crystalline network structure having a plurality of internal pores. The MOFs may have a Pa3 symmetry, which upon activation may convert into Fm3m symmetry.
    Type: Application
    Filed: May 28, 2020
    Publication date: November 24, 2022
    Inventors: Joseph M. Falkowski, Yogesh V. Joshi, Mary S. Abdulkarim, Simon C. Weston
  • Publication number: 20220372314
    Abstract: Ink compositions are provided for using solvent-based additive manufacturing (SBAM) techniques to form contactor structures and/or structures for use in an adsorption or absorption contactor. Methods forming a contactor using SBAM are also provided. The ink compositions can include a substantial content of adsorbent particles to provide enhanced adsorption by a contactor. Metal organic framework (MOF) structures and zeotype framework structures are examples of types of adsorbent particles that can be incorporated into an ink composition for forming a contactor structure by SBAM. The ink can further include a polymeric component that can serve as the structural component of a polymeric structural material produced by the additive manufacturing method. Such a structural material can correspond to a polymeric material with incorporated adsorbent particles. In some aspects, the polymeric structural material and/or the adsorbent particles can have selectivity for adsorption of CO2 from a process fluid flow.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, Ryan P. Lively, Carter W. Abney, Fengyi Zhang, William J. Koros, Wenying Quan, Stephen J.A. DeWitt, Matthew J. Realff, Hannah E. Holmes, Yang Liu
  • Publication number: 20220370984
    Abstract: Fiber compositions are provided that incorporate metal organic framework (MOF) materials into the polymeric matrix of the fiber. The metal organic framework materials can be incorporated by including MOF particles into a “dope” or synthesis solution used to form the fiber. The dope solution can then be used to form fibers that include 5.0 wt % or more of MOF in the resulting polymeric structural material of the fiber, relative to a weight of the fibers. In some aspects, the metal organic framework material can correspond to a MOF with selectivity for adsorption of CO2.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 24, 2022
    Inventors: Simon C. Weston, William J. Koros, Wenying Quan, Ryan P. Lively, Fengyi Zhang, Carter W. Abney, Stephen J.A. DeWitt, Matthew J. Realff, Hannah E. Holmes, Manjeshwar G. Kamath
  • Publication number: 20220340436
    Abstract: A method can include heating an aqueous reaction mixture comprising a silicon source and a boron source and/or an aluminum source in the presence of a diquaternary structure directing agent to a temperature of at least 75° C. to produce a zeolite. A composition can include a borosilicate zeolite, an aluminosilicate zeolite, or an aluminoborosilicate zeolite having a framework symmetry of C2/m and a unit cell with measurements of a of 3.5 ? to 4.5 ?, b of 20.1 ? to 21.1 ?, c of 15.5 to 16.5 ?, and ? of 97° to 98°.
    Type: Application
    Filed: July 22, 2020
    Publication date: October 27, 2022
    Inventors: Ross Mabon, Allen W. Burton, Hilda B. Vroman, Simon C. Weston
  • Publication number: 20220305456
    Abstract: Metal-organic framework materials (MOFs) are highly porous entities comprising a multidentate organic ligand coordinated to multiple metal centers, typically as a coordination polymer. Some highly porous MOFs lack stability at ambient conditions. MOFs having ambient condition stability may comprise a plurality of metal clusters (M4O clusters, M=a metal), and a plurality of 4-(1H-pyrazol-4-yl)benzoate ligands coordinated to the plurality of metal clusters to define an at least partially crystalline network structure having a plurality of internal pores.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 29, 2022
    Inventors: Joseph M. Falkowski, Yogesh V. Joshi, Mary S. Abdulkarim, Simon C. Weston
  • Publication number: 20220266219
    Abstract: Provided herein are adsorption materials comprising a metal-organic framework comprising metal ions of metals, a plurality of organic linkers and one or more modulator where each modulator forms a localized defect. Each organic linker in the plurality of organic linkers creates a bridge between metal ions. Each modulator is connected to only one metal chain. The adsorption material further comprises one or more ligands. Each ligand in the plurality of ligands can be an amine or other Lewis base (electron donor) appended to a metal ion of the metal-organic framework.
    Type: Application
    Filed: June 5, 2020
    Publication date: August 25, 2022
    Inventors: Carter W. Abney, Joseph M. Failkowski, Simon C. Weston, Anna C. Ivashko
  • Publication number: 20220233996
    Abstract: Systems and methods are provided for regenerating a bed containing absorbed and/or adsorbed CO2 using a low value steam stream. The steam stream can have a pressure of 10 kPa-a to 50 kPa-a and a temperature of 46° C. to 81° C. The steam stream can be used to displace CO2 from the bed, resulting in formation of a low pressure stream including water vapor and CO2. The stream containing water vapor and CO2 is then passed through a liquid ring pump that includes an associated ring cooler. The ring pump provides the suction necessary to draw the low value steam stream through the bed to displace the CO2. Due to the nature of operation of the liquid ring pump, the majority of water in the steam containing H2O and CO2 can be removed within the liquid ring pump, resulting in production of a stream comprising 90 vol % or more of CO2 at a pressure of 90 kPa-a or more.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 28, 2022
    Inventors: Mohsen S. Yeganeh, John W. Fulton, JR., Sundaresan Narayanan, Timothy A. Barckholtz, Simon C. Weston
  • Patent number: 11364479
    Abstract: Disclosed are zeolitic imidazolate framework (ZIF) compositions in which at least a portion of the ligands in its shell have been exchanged with other ligands, and methods of making such shell-ligand-exchanged ZIFs. Also disclosed is the use of such shell-ligand-exchanged ZIFs in hydrocarbon separation processes.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 21, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph M. Falkowski, Mobae Afeworki, David C. Calabro, Yi Du, Himanshu Gupta, Simon C. Weston
  • Publication number: 20220176343
    Abstract: Provided herein are adsorption materials comprising a mixed-metal mixed-organic framework comprising metal ions of two or more distinct metals and a plurality of organic linkers. Each organic linker in the plurality of organic linkers is connected to a metal ion. The adsorption material further comprises a plurality of ligands. In an aspect, each respective ligand in the plurality of ligands is an amine or other Lewis base (electron donor) appended to a metal ion in the two of more distinct elements of the mixed-metal organic framework to provide a mixed-metal mixed-organic framework system.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 9, 2022
    Inventors: Simon C. Weston, Carter W. Abney, Joseph M. Falkowski, Anna C. Ivashko
  • Publication number: 20220153757
    Abstract: Metal-organic framework materials (MOFs) are highly porous entities comprising a multidentate organic ligand coordinated to multiple metal centers, typically as a coordination polymer. Crystallization may be problematic in some instances when secondary binding sites are present in the multidentate organic ligand. Multidentate organic ligands comprising first and second binding sites bridged together with a third binding site comprising a diimine moiety may alleviate these issues, particularly when using a preformed metal cluster as a metal source to form a MOF. Such MOFs may comprise a plurality of metal centers, and a multidentate organic ligand coordinated to the plurality of metal centers to define an at least partially crystalline network structure having a plurality of internal pores, and in which the multidentate organic ligand comprises first and second binding sites bridged together with a third binding site comprising a diimine moiety.
    Type: Application
    Filed: March 30, 2020
    Publication date: May 19, 2022
    Inventors: Joseph M. Falkowski, Carter W. Abney, Mary S. Abdulkarim, Aaron Sattler, Michele Paccagnini, Simon C. Weston
  • Publication number: 20220048929
    Abstract: Provided herein are methods of novel methods of synthesizing a metal-organic framework system by vapor-phase appending of a plurality of ligands appended to a metal-organic framework. Also, provided are methods of recycling metal-organic framework systems by detaching the ligand and re-appending the same ligand or appending a different ligand to the metal-organic framework to provide a recycled or repurposed metal-organic framework system.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 17, 2022
    Inventors: Carter W. Abney, Joseph M. Falkowski, Mary S. Abdulkarim, Anna C. Ivashko, Julie J. Seo, Aaron W. Peters, Matthew T. Kapelewski, Gerardo J. Majano Sanchez, Wesley Sattler, Simon C. Weston
  • Publication number: 20220040668
    Abstract: The present application relates to absorbents comprising tetraamine ligands grafted onto metal-organic frameworks and a method for using same for CO2 capture from fossil fuel combustion sources to reduce emissions. In particular, this application relates to capturing >90% by volume, preferable >99% by volume, CO2 emissions such that the emissions are negative, essentially removing CO2 from the combustion air.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 10, 2022
    Inventor: Simon C. Weston
  • Publication number: 20220023827
    Abstract: This disclosure relates to EMM-41 materials, methods for making it, and processes for its use. This disclosure also relates to the structure directing agents used in the methods for making the EMM-41 material as well as the synthesis method used to prepare such structure directing agents.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 27, 2022
    Inventors: Ross Mabon, Michael A. Marella, Allen W. Burton, Hilda B. Vroman, Kirk D. Schmitt, Tom Willhammar, Hongyi Xu, Xiaodong Zou, Simon C. Weston
  • Patent number: 11103826
    Abstract: Systems and methods for concentration of a sorbate in a feedstream and subsequent adsorption utilizing a Type V adsorbent are provided.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: August 31, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Simon C. Weston
  • Patent number: 11097250
    Abstract: Methods of synthesizing crystalline metal-organic frameworks (MOFs) comprising polytopic organic linkers and cations, where each linker is connected to two or more cations, are provided. In the disclosed methods, the linkers are reacted with a compound of formula MnXm, where M is cationic Be, Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Cd, or Hf, X is anionic, n and m are integers. The reacting is buffered by a buffer devoid of metal coordinating functionality when the pKa of the anion is below a threshold related to the lowest pKa of the linker. The reacting is optionally not buffered when the pKa of the anion is at or above this threshold. The disclosed methods lead to product phase MOF in which crystal growth is controlled leading to control over molecular diffusion.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: August 24, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Simon C. Weston, Jeffrey R. Long, Joseph M. Falkowski, Kristen Colwell, Rodolfo Torres
  • Patent number: 11014067
    Abstract: Polyamines with lengths carefully tailored to the framework dimensions are appended to metal-organic frameworks such as Mg2(dobpdc) (dobpdc4-=4,4?-dioxidobiphenyl-3,3?-dicarboxylate) with the desired loading of one polyamine per two metal sites. The polyamine-appended materials show step-shaped adsorption and desorption profiles due to a cooperative CO2 adsorption/desorption mechanism. Several disclosed polyamine-appended materials exhibit strong ability to capture CO2 from various compositions. Increased stability of amines in the framework has been achieved using high molecular weight polyamine molecules that coordinate multiple metal sites in the framework. The preparation of these adsorbents as well as their characterization are provided.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 25, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Simon C. Weston, Joseph M. Falkowski, Jeffrey R. Long, Eugene J. Kim, Jeffrey D. Martell, Phillip J. Milner, Rebecca L. Siegelman