Patents by Inventor Simon E. Finburgh

Simon E. Finburgh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10952675
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises an apparatus adapted to automatically and accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject. The apparatus comprised of a sensor device removably coupled to an actuator which is used to position the sensor during measurements. Methods for positioning the alignment apparatus and sensor, and operating the apparatus, are also disclosed.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: March 23, 2021
    Assignee: SHANGYI MEDICAL TECHNOLOGY (HANGZHOU) CO., LTD
    Inventors: Simon E. Finburgh, Andrew S. Katayama, Ronald J. Vidischak, Anthony T. Butler, Kurt Blessinger
  • Patent number: 9247886
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises spatially compact “bracelet” embodiment adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an optional alignment apparatus which moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. A completely autonomous variant of the bracelet apparatus having internal power supply and wireless interfaces is also disclosed. Methods for positioning the alignment apparatus and sensor and providing treatment to the subject are also described.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: February 2, 2016
    Assignee: Tensys Medical, Inc.
    Inventors: Simon E. Finburgh, Mark W. Perona, Russell D. Hempstead
  • Publication number: 20150196204
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The alignment apparatus moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. Methods for positioning the alignment apparatus and sensor, correcting for hydrostatic pressure effects, and providing treatment to the subject are also disclosed.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 16, 2015
    Inventors: Stephen R. Hessel, Simon E. Finburgh, Russell D. Hempstead, Mark W. Perona, Ronald J. Vidischak, Gregory I. Voss, Ronald S Conero, William H. Markle
  • Publication number: 20150011841
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises an apparatus adapted to automatically and accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject. The apparatus comprised of a sensor device removably coupled to an actuator which is used to position the sensor during measurements. Methods for positioning the alignment apparatus and sensor, and operating the apparatus, are also disclosed.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 8, 2015
    Inventors: SIMON E. FINBURGH, Andrew S. Katayama, Ronald J. Vidischak, Anthony T. Butler, Kurt Blessinger
  • Patent number: 8777862
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises an apparatus adapted to automatically and accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject. The apparatus comprised of a sensor device removably coupled to an actuator which is used to position the sensor during measurements. Methods for positioning the alignment apparatus and sensor, and operating the apparatus, are also disclosed.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: July 15, 2014
    Assignee: Tensys Medical, Inc.
    Inventors: Simon E. Finburgh, Andrew S. Katayama, Ronald J. Vidischak, Anthony T. Butler, Kurt Blessinger
  • Publication number: 20110288382
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises spatially compact “bracelet” embodiment adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an optional alignment apparatus which moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. A completely autonomous variant of the bracelet apparatus having internal power supply and wireless interfaces is also disclosed. Methods for positioning the alignment apparatus and sensor and providing treatment to the subject are also described.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Inventors: Simon E. Finburgh, Mark W. Perona, Russell D. Hempstead
  • Publication number: 20110213255
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The apparatus moveably captures the sensor to, inter alia, facilitate-coupling thereof to an actuator used to position the sensor during measurements. In a second aspect, improved sensor apparatus is disclosed adapted to minimize the effects of shear during sensor movement and monitoring as well as maximize the lateral and proximal search area available to the sensor within the apparatus. Methods for positioning the alignment apparatus and sensor are also disclosed.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 1, 2011
    Inventors: Simon E. Finburgh, Ronald J. Vidischak, Anthony T. Butler, Christopher M. Jones, David L. Eshbaugh, Stuart Karten, Steve Piorek
  • Patent number: 7946994
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises spatially compact “bracelet” embodiment adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an optional alignment apparatus which moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. A completely autonomous variant of the bracelet apparatus having internal power supply and wireless interfaces is also disclosed. Methods for positioning the alignment apparatus and sensor and providing treatment to the subject are also described.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: May 24, 2011
    Assignee: Tensys Medical, Inc.
    Inventors: Simon E. Finburgh, Mark W. Perona, Russell D. Hempstead
  • Publication number: 20090131806
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises an apparatus adapted to automatically and accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject. The apparatus comprised of a sensor device removably coupled to an actuator which is used to position the sensor during measurements. Methods for positioning the alignment apparatus and sensor, and operating the apparatus, are also disclosed.
    Type: Application
    Filed: October 9, 2008
    Publication date: May 21, 2009
    Inventors: Simon E. Finburgh, Andrew S. Katayama, Ronald J. Vidischak, Anthony T. Butler, Kurt Blessinger
  • Publication number: 20080021334
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The apparatus moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. In a second aspect, improved sensor apparatus is disclosed adapted to minimize the effects of shear during sensor movement and monitoring as well as maximize the lateral and proximal search area available to the sensor within the apparatus. Methods for positioning the alignment apparatus and sensor are also disclosed.
    Type: Application
    Filed: July 19, 2006
    Publication date: January 24, 2008
    Inventors: Simon E. Finburgh, Ronald J. Vidischak, Anthony T. Butler, Christopher M. Jones, David L. Eshbaugh, Stuart Karten, Steve Piorek
  • Publication number: 20040073123
    Abstract: Improved apparatus and methods for non-invasively assessing one or more hemodynamic parameters associated with the circulatory system of a living organism. In one aspect, the invention comprises apparatus adapted to accurately place and maintain a sensor (e.g., tonometric pressure sensor) with respect to the anatomy of the subject, including an alignment apparatus which is separable from an adjustable fixture. The alignment apparatus moveably captures the sensor to, inter alia, facilitate coupling thereof to an actuator used to position the sensor during measurements. The alignment apparatus also advantageously allows the sensor position to be maintained when the fixture is removed from the subject, such as during patient transport. Methods for positioning the alignment apparatus and sensor, correcting for hydrostatic pressure effects, and providing treatment to the subject are also disclosed.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 15, 2004
    Inventors: Stephen R. Hessel, Simon E. Finburgh, Russell D. Hempstead, Mark W. Perona, Ronald J. Vidischak, Gregory I. Voss, Ronald S. Conero, William H. Markle
  • Patent number: 6176831
    Abstract: Apparatus is disclosed for non-invasively monitoring a subject's blood pressure, in which a pressure sensor assembly that includes a pressure transducer is compressed against tissue overlying an artery, with sufficient force to compress the artery. A motor first servo control system optimizes the amount of artery compression, which occurs at a mean transmural pressure of about zero, by modulating one side of a lever arm compressing the assembly against the tissue, creating a pressure signal indicative of transmural pressure. Since different pressure effects are realized according to the amount of artery compression, an appropriate control signal can be produced that provides for a second motor to adjust the other side of the lever arm to provide the optimum compression of the assembly into the tissue overlying the artery. The apparatus is optimally positioned over an artery by including an ultrasonic blood flow sensor configured to sense the flow of blood under the pressure transducer.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: January 23, 2001
    Assignee: Tensys Medical, Inc.
    Inventors: Gregory I. Voss, Alvis J. Somerville, Simon E. Finburgh
  • Patent number: 5537853
    Abstract: An air-in-line sensing apparatus for use with a parenteral fluid administration set to detect the passage of air through a fluid conduit. The apparatus comprises a first housing having a first arcuate section mounting a first transducer adjacent the first arcuate section and a second housing having a second arcuate section mounting a second transducer adjacent the second arcuate section. One housing is independently movable relative to the other housing so that when the movable housing is moved towards the other housing, the first and second arcuate sections capture a length of administration set tubing therebetween providing secure intimate contact therewith. A signal may be generated from one of such transducers, passed through the fluid conduit and received by the other transducer to detect whether the conduit is carrying air.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: July 23, 1996
    Assignee: IVAC Corporation
    Inventors: Simon E. Finburgh, Matthew G. Morris, Eric A. Warner
  • Patent number: 5364364
    Abstract: A fluid flow control system having a valve disposed in-line with a fluid conduit extending between a fluid container and a fluid receiver. The conduit and valve are designed to be used with a fluid infusion device such as a peristaltic pump. The valve is non-clamping and includes a rotatable member with an external handle for controlling the valve between flow and flow stop positions. The handle can be manually operated as well as automatically operated. Mounted to the infusion device is an automatic operating mechanism for cooperating with the pumping mechanism of the infusion device to control the position of the valve. In a disclosed embodiment, the operating mechanism is mounted to an access door of the pump which cannot be closed until the peristaltic mechanism is engaged with the tubing. When the door is closed, the operating mechanism automatically moves the valve to the flow position. When the access door is opened, the mechanism automatically moves the valve to the flow stop position.
    Type: Grant
    Filed: August 4, 1993
    Date of Patent: November 15, 1994
    Assignee: IVAC Corporation
    Inventors: Spyros Kasvikis, Richard W. Herrmann, Simon E. Finburgh
  • Patent number: 5177993
    Abstract: An air-in-line sensor is provided comprising an adapter for insertion in the fluid line and a sensor housing. The adapter is semi-compliant and includes convex-shaped acoustic coupling surfaces for engaging the straight and rigid transducer sensing walls of the housing. The convex surfaces of the adapter have a larger diameter than the distance between the housing sensing walls and an interference fit results. Due to this interference fit, the shape of the coupling surfaces, the varying thicknesses of the adapter walls and the difference in compliance of the materials of the adapter and the housing, a more uniform contact pressure profile is provided. The upper part of each sensing channel wall in the housing includes a ledge which wipes contaminants from the coupling surfaces of the adapter as it is inserted into the sensor channel of the housing.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: January 12, 1993
    Assignee: IVAC Corporation
    Inventors: Kenneth A. Beckman, James E. Dikeman, Simon E. Finburgh