Patents by Inventor Simon Leonard

Simon Leonard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210205032
    Abstract: The present disclosure provides a system and method for controlling an articulating member including a tool. The method includes determining a first confidence indicator based on a manual control mode for the articulating member, determining a second confidence indicator based on an autonomous control mode for the articulating member, generating an allocation function based on the first confidence indicator and the second confidence indicator, and generating a control command for the articulating member based on the allocation function.
    Type: Application
    Filed: May 16, 2019
    Publication date: July 8, 2021
    Applicants: University of Maryland, College Park, The Johns Hopkins University, Children's National Medical Center
    Inventors: Hamed Saeidi, Axel Krieger, Simon Leonard, Justin Opfermann
  • Publication number: 20210077195
    Abstract: The present disclosure provides a system and method for controlling an articulating member including a tool. The system may include a dual camera system that captures near-infrared (NIR) images and point cloud images of a tissue or other substance that includes NIR markers. The system may generate a three-dimensional (3D) path based on identified positions of the NIR markers, may filter the generated path, and may generate a 3D trajectory for controlling the articulated arm of a robot having a tool to create an incision along the filtered path. In a shared control mode, an operator may generate manually control commands for the robot to guide the tool along such a path, while automated control commands are generated in parallel. One or more allocation functions may be calculated based on calculated manual and automated error models, and shared control signals may be generated based on the allocation functions.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Applicants: University of Maryland, College Park, The Johns Hopkins University, Children's National Medical Center
    Inventors: Hamed Saeidi, Axel Krieger, Simon Leonard, Justin Opfermann, Michael Kam
  • Patent number: 10675040
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: June 9, 2020
    Assignee: Children's National Medical Center
    Inventors: Peter C Kim, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Publication number: 20190282307
    Abstract: System and method for tracking and control in medical procedures. The system including a device that deploys fluorescent material on at least one of an organ under surgery and a surgical tool, a visual light source, a fluorescent light source corresponding to an excitation wavelength of the fluorescent material, an image acquisition and control element that controls the visual light source and the fluorescent light source, and captures and digitizes at least one of resulting visual images and fluorescent images, and an image-based, tracking module that applies image processing to the visual and fluorescent images, the image processing detecting fluorescent markers on at least one of the organ and the surgical tool.
    Type: Application
    Filed: March 25, 2019
    Publication date: September 19, 2019
    Applicant: Children's National Medical Center
    Inventors: Mahdi AZIZIAN, Peter Kim, Axel Krieger, Simon Leonard, Azad Shademan, Ryan Decker, Justin Opfermann, Matthieu Dumont, Nick Uebele, Lydia Carroll, Ryan Walter, Rohan Fernandes
  • Publication number: 20160058517
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Application
    Filed: November 12, 2015
    Publication date: March 3, 2016
    Applicant: Children's National Medical Center
    Inventors: Peter C KIM, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Patent number: 9220570
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 29, 2015
    Assignee: Children's National Medical Center
    Inventors: Peter C. Kim, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Publication number: 20140005684
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Peter C. KIM, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Publication number: 20130274596
    Abstract: System and method for tracking and control in medical procedures. The system including a device that deploys fluorescent material on at least one of an organ under surgery and a surgical tool, a visual light source, a fluorescent light source corresponding to an excitation wavelength of the fluorescent material, an image acquisition and control element that controls the visual light source and the fluorescent light source, and captures and digitizes at least one of resulting visual images and fluorescent images, and an image-based tracking module that applies image processing to the visual and fluorescent images, the image processing detecting fluorescent markers on at least one of the organ and the surgical tool.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 17, 2013
    Applicant: Children's National Medical Center
    Inventors: Mahdi AZIZIAN, Peter C.W. Kim, Axel Krieger, Simon Leonard, Azad Shademan
  • Patent number: 7640647
    Abstract: Projecting elongate stub walls are provided on the planar surfaces of a substrate at positions where bonding of the substrate to a clamping lid or base is to be carried out. On firing of the substrate, the surfaces thereof are mechanically processed but since the stub walls protrude from the substrate, the grinding and polishing tools make contact with the surfaces of these stub walls, rather than with the entire substrate surface. As a result, the area of the substrate to be processed is minimised and problems with dishing and erosion are alleviated. This allows the clamping lid, or frame to be bonded, using conventional conductive adhesive processes, avoiding the cracking and stress problems associated with non-uniformity of the surface of the ceramic substrates.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 5, 2010
    Assignee: Astrium Limited
    Inventor: Simon Leonard Rumer