Patents by Inventor Simon P. Dukes

Simon P. Dukes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240336507
    Abstract: A system for the treatment of phosphate-containing wastewater comprises a pretreatment subsystem including a mixing chamber configured to mix a potassium-based salt with the wastewater to precipitate K2SiF6 from the wastewater, a solids-liquid separator to separate the precipitated K2SiF6 from the wastewater and form a pretreated wastewater, and a mixing chamber to dilute the pretreated wastewater with raw wastewater, and a filtration subsystem including a first filtration configured to receive the pretreated wastewater and remove particles to form a first effluent, a second filtration unit remove divalent ions from the first effluent and form a second effluent, and a third filtration unit configured to remove additional dissolved solids from the second effluent and form a third effluent suitable for discharge to the environment.
    Type: Application
    Filed: May 26, 2022
    Publication date: October 10, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: Simon P Dukes, Joshua Griffis, Li-Shiang Liang, Harshita Gogoi, Wenxin Du, Thomas K Mallmann
  • Publication number: 20240308885
    Abstract: An electrochlorination system comprises a source of feed fluid, a product fluid outlet, and a plurality of electrochemical cells connected fluidically between the source of feed fluid and the product fluid outlet. The system is configured to operate at least one of the plurality of electrochemical cells at one of a first current density or a first flow rate, and to operate another of the plurality of electrochemical cells at a second current density or second flow rate different from the respective first current density or first flow rate.
    Type: Application
    Filed: November 14, 2023
    Publication date: September 19, 2024
    Applicants: Evoqua Water Technologies LLC, Evoqua Water Technologies Limited
    Inventors: Joshua Griffis, Simon P Dukes, Paul Beddoes, Peter G Rogers
  • Patent number: 12070722
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, a cell stack including alternating depleting compartments and concentrating compartments disposed between the first electrode and the second electrode, an inlet manifold configured to introduce a fluid to one of the depleting compartments or the concentrating compartments an outlet manifold, and one or more of a fluid flow director disposed within the inlet manifold and having a surface configured to alter a flow path of the fluid introduced into the inlet manifold and direct the fluid into the one of the depleting compartments or the concentrating compartments, and a second fluid flow director disposed within the outlet manifold and having a surface configured to alter a flow path of the fluid introduced into the outlet manifold via one of the depleting compartments or the concentrating compartments.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: August 27, 2024
    Assignee: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Li-Shiang Liang, William Lane, Simon P. Dukes, Kris Wy Loon Lim
  • Publication number: 20240240338
    Abstract: Apparatuses for the generation of carbon dioxide and hydrogen from a water having a carbonate species are disclosed. The apparatus includes an anodic compartment having an anode disposed on a first side of the anodic compartment and a cathodic compartment having a cathode disposed on a first side of the cathodic compartment. The apparatus further includes a first cation permeable fluidic separator disposed on a second side of the anodic compartment and a second cation permeable fluidic separator disposed on a second side of the cationic compartment. A center compartment is defined between the first cation permeable fluidic separator and the second cation permeable fluidic separator. The apparatus further includes a flow control system configured to independently control flow of water through each of the anodic compartment, the cathodic compartment, and the center compartment. Methods of generating hydrogen, carbon dioxide, and oxygen from seawater using the apparatus are also disclosed.
    Type: Application
    Filed: May 11, 2022
    Publication date: July 18, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Simon P Dukes, Li-Shiang Liang, Benjamin Satterfield, Zaccur Qasim Fettig
  • Patent number: 12017183
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, and a cell stack including a plurality of sub-blocks each having alternating depleting compartments and concentrating compartments and each including frame and channel portions disposed between the first electrode and the second electrode. An internal seal formed of a first material is disposed between and in contact with the channel portions between adjacent sub-blocks in the cell stack and configured to prevent leakage between depleting compartments and concentrating compartments in the adjacent sub-blocks. An external seal formed of a second material having at least one material parameter different from the first material is disposed between and in contact with the frames of the adjacent sub-blocks in the cell stack and configured to prevent leakage from an internal volume of the electrochemical separation device to outside of the electrochemical separation device.
    Type: Grant
    Filed: June 13, 2023
    Date of Patent: June 25, 2024
    Assignee: Evoqua Water Technologies LLC
    Inventors: Michael J. Muse, Joshua Griffis, Li-Shiang Liang, Michael Shaw, Simon P. Dukes
  • Patent number: 11929533
    Abstract: A flow battery having at least one rechargeable cell is disclosed. The at least one rechargeable cell can include an anolyte compartment, a catholyte compartment, and an anion exchange membrane positioned between the anolyte and catholyte compartments. The anion exchange membrane can have a thickness of less than 100 ?m and a steady state diffusivity of less than 0.4 ppm/hr/cm2 with respect to a cation species in an electrolyte of the rechargeable cell. A method of facilitating use of a flow battery including providing the anion exchange membrane is also disclosed. A method of facilitating storage of an electric charge comprising providing the flow battery is also disclosed. A method of producing an anion exchange membrane is also disclosed.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: March 12, 2024
    Assignee: Evoqua Water Technologies LLC
    Inventors: George Y. Gu, Savvas Hadjikyriacou, Michael J. Shaw, Simon P. Dukes
  • Publication number: 20240050902
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, and a cell stack including a plurality of sub-blocks each having alternating depleting compartments and concentrating compartments and each including frame and channel portions disposed between the first electrode and the second electrode. An internal seal formed of a first material is disposed between and in contact with the channel portions between adjacent sub-blocks in the cell stack and configured to prevent leakage between depleting compartments and concentrating compartments in the adjacent sub-blocks. An external seal formed of a second material having at least one material parameter different from the first material is disposed between and in contact with the frames of the adjacent sub-blocks in the cell stack and configured to prevent leakage from an internal volume of the electrochemical separation device to outside of the electrochemical separation device.
    Type: Application
    Filed: June 13, 2023
    Publication date: February 15, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: Michael J. Muse, Joshua Griffis, LI-Shiang Liang, Michael Shaw, Simon P. Dukes
  • Publication number: 20240043294
    Abstract: A method of operating an electrochemical cell including introducing an aqueous solution into the electrochemical cell, applying a current across an anode and a cathode to produce a product, monitoring the voltage, dissolved hydrogen, or a condition of the aqueous solution, and applying the current in a pulsed waveform responsive to one of the measured parameters is disclosed. An electrochemical system including an electrochemical cell including an anode and a cathode, a source of an aqueous solution having an outlet fluidly connectable to the electrochemical cell, a sensor for measuring a parameter, and a controller configured to cause the anode and the cathode to apply the current in a pulsed waveform responsive to the parameter measurement is disclosed. Methods of suppressing accumulation of hydrogen gas within the electrochemical cell are also disclosed. Methods of facilitating operation of an electrochemical cell are also disclosed.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: George Y. Gu, Michael J. Shaw, Joshua Griffis, Simon P. Dukes
  • Publication number: 20240034648
    Abstract: An electrochemical cell including a first chamber having an anode, a second chamber having a cathode, at least one ionic connection between the first chamber and the second chamber, such that liquid electrolyte from the first chamber is prevented from mixing with liquid electrolyte in the second chamber is provided. The first chamber and the second chamber can be arranged in parallel and positioned remotely from each other. An electrochemical system including the electrochemical cell, and first and second sources of saline aqueous solutions is also provided. Water treatment systems are also provided. A method of operating an electrochemical cell including introducing first and second saline aqueous solutions into first and second chambers of the electrochemical cell, and applying a current across the anode and the cathode to generate first and second products, respectively is also provided. A method of facilitating operation of an electrochemical cell is also provided.
    Type: Application
    Filed: October 8, 2023
    Publication date: February 1, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, George Gu, Simon P. Dukes, Michael J. Shaw
  • Publication number: 20240010529
    Abstract: Methods of treating water having organic contaminants are disclosed. The methods include performing a first treatment on the water effective to oxidize a predetermined amount of the organic contaminant and electrochemically treating the water. The methods include introducing a hydrogen peroxide (H2O2) containing reagent into the water, allowing the H2O2 containing reagent to react with the organic contaminant for a reaction time effective to oxidize a predetermined amount of the organic contaminant, and electrochemically treating the water. Systems for treating water are also disclosed. The systems include an electrochemical cell, a source of an H2O2 containing reagent upstream from the electrochemical cell, and a controller operable to regulate a reaction time of the H2O2 containing reagent in the water and a potential applied to the electrochemical cell.
    Type: Application
    Filed: October 19, 2021
    Publication date: January 11, 2024
    Applicant: Evoqua Water Technologies LLC
    Inventors: SIMON P. DUKES, GEORGE Y. GU, JOSHUA GRIFFIS, YANG CHEN
  • Publication number: 20230373833
    Abstract: An electrochlorination process includes treating water from a source of water in an advanced water conditioning system that removes at least a portion of anions and cations from the water and produces demineralized water, blending the demineralized water with sodium chloride to form a brine solution, and treating the brine solution in an electrolyzer to form a disinfection solution including sodium hypochlorite having a concentration of chlorate of less than 0.25 mg/L.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 23, 2023
    Applicant: Evoqua Water Technologies Ltd
    Inventors: JOSHUA GRIFFIS, SIMON P. DUKES, WENXIN DU, DANIEL R. CORRADO, FREDERICK C. WILKINS, XIANGYI QIAO, ROMULO DADOR CONDE, DAVID BONNICK, RYAN FLOOD
  • Publication number: 20230331595
    Abstract: Electrochemical treatment for the removal of poly- and perfluorolkyl substances from water is disclosed. An electrochemical cell may include a Magnéli phase titanium oxide electrode.
    Type: Application
    Filed: August 23, 2019
    Publication date: October 19, 2023
    Applicant: Evoqua Water Technologies LLC
    Inventors: Yang Chen, Simon P. Dukes
  • Publication number: 20230201775
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, a cell stack including alternating depleting compartments and concentrating compartments disposed between the first electrode and the second electrode, an inlet manifold configured to introduce a fluid to one of the depleting compartments or the concentrating compartments an outlet manifold, and one or more of a fluid flow director disposed within the inlet manifold and having a surface configured to alter a flow path of the fluid introduced into the inlet manifold and direct the fluid into the one of the depleting compartments or the concentrating compartments, and a second fluid flow director disposed within the outlet manifold and having a surface configured to alter a flow path of the fluid introduced into the outlet manifold via one of the depleting compartments or the concentrating compartments.
    Type: Application
    Filed: November 29, 2022
    Publication date: June 29, 2023
    Applicant: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Li-Shiang Liang, William Lane, Simon P. Dukes, Kris Wy Loon LIM
  • Patent number: 11673096
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, and a cell stack including a plurality of sub-blocks each having alternating depleting compartments and concentrating compartments and each including frame and channel portions disposed between the first electrode and the second electrode. An internal seal formed of a first material is disposed between and in contact with the channel portions between adjacent sub-blocks in the cell stack and configured to prevent leakage between depleting compartments and concentrating compartments in the adjacent sub-blocks. An external seal formed of a second material having at least one material parameter different from the first material is disposed between and in contact with the frames of the adjacent sub-blocks in the cell stack and configured to prevent leakage from an internal volume of the electrochemical separation device to outside of the electrochemical separation device.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: June 13, 2023
    Inventors: Michael J. Muse, Joshua Griffis, LI-Shiang Liang, Michael Shaw, Simon P. Dukes
  • Publication number: 20230145108
    Abstract: Methods for treating phosphogypsum-containing water are disclosed. The water may be treated so as to promote precipitation of one or more target constituents and to facilitate downstream membrane treatment. A coagulant may be added to promote phosphate recovery. Ammonia may optionally be removed. Related systems are also disclosed.
    Type: Application
    Filed: August 21, 2019
    Publication date: May 11, 2023
    Applicant: Evoqua Water Technolgies LLC
    Inventors: Wenxin Du, Hao Dang, George Y. Gu, Michael J. Shaw, Simon P. Dukes, Justin Wayne Higgs
  • Publication number: 20230130585
    Abstract: Methods of treating a waste stream containing perfluoroalkyl substances (PFAS) are disclosed. The methods include directing the waste stream to a dilution compartment of an electrochemical separation device, directing a treatment stream to a concentration compartment of the electrochemical separation device, and applying a voltage across the electrodes to produce a dilute stream substantially free of the PFAS and a concentrate stream. At least one of the waste stream and the treatment stream comprises a water miscible organic solvent. Methods of concentrating PFAS from a wastewater are also disclosed. PFAS concentration systems are also disclosed. The systems include a column comprising an ion exchange resin and an electrochemical separation device having a dilution compartment fluidly connected to an outlet of the column. Methods of facilitating treatment of a waste stream containing PFAS are also disclosed.
    Type: Application
    Filed: March 23, 2021
    Publication date: April 27, 2023
    Applicant: Evoqua Water Technologies LLC
    Inventors: SIMON P. DUKES, GEORGE GU, SAVVAS HADJIKYRIACOU, YANG CHEN
  • Publication number: 20220402794
    Abstract: A system for treating a source of water contaminated with PFAS is disclosed. The system includes a PFAS separation stage having an inlet fluidly connectable to the source of water contaminated with PFAS, a diluate outlet, and a concentrate outlet and a PFAS elimination stage positioned downstream of the PFAS separation stage and having an inlet fluidly connected to an outlet of the PFAS separation stage, the elimination of the PFAS occurring onsite with respect to the source of water contaminated with PFAS, with the system maintaining an elimination rate of PFAS greater than about 99%. A method of treating water contaminated with PFAS is also disclosed.
    Type: Application
    Filed: January 8, 2020
    Publication date: December 22, 2022
    Applicant: Evoqua Water Technologies LLC
    Inventors: YANG CHEN, SIMON P. DUKES, ADRIAAN JEREMIASSE, WENXIN DU, SAVVAS E. HADJIKYRIACOU, THOMAS K. MALLMANN
  • Patent number: 11511231
    Abstract: An electrochemical separation device includes a first electrode, a second electrode, a cell stack including alternating depleting compartments and concentrating compartments disposed between the first electrode and the second electrode, an inlet manifold configured to introduce a fluid to one of the depleting compartments or the concentrating compartments an outlet manifold, and one or more of a fluid flow director disposed within the inlet manifold and having a surface configured to alter a flow path of the fluid introduced into the inlet manifold and direct the fluid into the one of the depleting compartments or the concentrating compartments, and a second fluid flow director disposed within the outlet manifold and having a surface configured to alter a flow path of the fluid introduced into the outlet manifold via one of the depleting compartments or the concentrating compartments.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 29, 2022
    Assignee: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Li-Shiang Liang, William Lane, Simon P. Dukes, Kris Wy Loon Lim
  • Patent number: 11492279
    Abstract: An electrochlorination system includes an electrolyzer fluidically connectable between a source of feed fluid and a product fluid outlet, and a sub-system configured to one of increase a pH of the feed fluid, or increase a ratio of monovalent to divalent ions in the feed fluid, upstream of the electrolyzer.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: November 8, 2022
    Assignee: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Simon P. Dukes, Ll-Shiang Liang, Darren Dale, Michael Shaw, Paul Beddoes, George Y. Gu
  • Publication number: 20220259085
    Abstract: Methods for treating phosphogypsum-containing water are disclosed. The water may be treated so as to promote precipitation of one or more target constituents and to facilitate downstream membrane treatment. A coagulant may be added to promote phosphate recovery. Related systems are also disclosed.
    Type: Application
    Filed: August 21, 2019
    Publication date: August 18, 2022
    Applicant: Evoqua Water Technologies LLC
    Inventors: Hao Dang, Wenxin Du, George Y. Gu, Michael J. Shaw, Simon P. Dukes