Patents by Inventor Simon Richard Hattersley

Simon Richard Hattersley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230200675
    Abstract: A method for detecting a magnetic marker comprises generating a driving magnetic field comprising first and second frequencies and detecting a response magnetic field comprising first and second response components. The magnetic marker provides a non-linear response to the driving signal. A primary portion of the response components is generated by the magnetic marker, and secondary portion of the response components is generated by a secondary magnetic source. The method comprises determining a driving factor representing a ratio of the frequencies in the driving signal; determining a correction factor corresponding to the secondary ortion of the second response component, based on the first response component and the driving factor; determining a detection signal corresponding to the primary portion of the second response component, based on the second response component and the determined correction factor; and generating an output signal based on a strength of the detection signal.
    Type: Application
    Filed: May 18, 2021
    Publication date: June 29, 2023
    Applicant: ENDOMAGNETICS LIMITED
    Inventors: Tiziano Agostinelli, Simon Richard Hattersley
  • Publication number: 20230176152
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a computer in electrical communication with the power module and the sense module. The computer generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles are injected into a breast and the lymph nodes collecting the particles are detected with the probe and deemed sentinel nodes.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 8, 2023
    Applicant: ENDOMAGNETICS LIMITED
    Inventor: Simon Richard Hattersley
  • Patent number: 11592501
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a computer in electrical communication with the power module and the sense module. The computer generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles are injected into a breast and the lymph nodes collecting the particles are detected with the probe and deemed sentinel nodes.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: February 28, 2023
    Inventor: Simon Richard Hattersley
  • Publication number: 20210046237
    Abstract: A hemofilter system. In one embodiment, the hemofilter system includes a container having a first surface, a second surface, and one or more wall surfaces, the first surface, the second surface and the one or more wall surfaces defining a volume; an input port in fluid communication with the first surface; an output port in fluid communication with the second surface; a filter bed comprising a plurality of planar magnetic meshes stacked in close juxtaposition and positioned within the container volume and coplanar with the first and second surfaces; a first magnet positioned on a first surface of the container; a second magnet positioned on the second surface of the container; a first input conduit in fluid communication with the input port; and a first output conduit in fluid communication with the output port. In another embodiment, the hemofilter system includes a pump in the input conduit.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Applicant: MEDISIEVE LTD
    Inventors: George Charles Martin FRODSHAM, Quentin Andrew PANKHURST, Richard Alan WENMAN, Simon Richard HATTERSLEY
  • Publication number: 20200256935
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a computer in electrical communication with the power module and the sense module. The computer generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles are injected into a breast and the lymph nodes collecting the particles are detected with the probe and deemed sentinel nodes.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Applicant: Endomagnetics Ltd.
    Inventor: Simon Richard Hattersley
  • Patent number: 10634741
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a computer in electrical communication with the power module and the sense module. The computer generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles are injected into a breast and the lymph nodes collecting the particles are detected with the probe and deemed sentinel nodes.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 28, 2020
    Assignee: ENDOMAGNETICS LTD.
    Inventor: Simon Richard Hattersley
  • Publication number: 20190192759
    Abstract: A hemofilter system. In one embodiment, the hemofilter system includes a container having a first surface, a second surface, and one or more wall surfaces, the first surface, the second surface and the one or more wall surfaces defining a volume; an input port in fluid communication with the first surface; an output port in fluid communication with the second surface; a filter bed comprising a plurality of planar magnetic meshes stacked in close juxtaposition and positioned within the container volume and coplanar with the first and second surfaces; a first magnet positioned on a first surface of the container; a second magnet positioned on the second surface of the container; a first input conduit in fluid communication with the input port; and a first output conduit in fluid communication with the output port. In another embodiment, the hemofilter system includes a pump in the input conduit.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Applicant: MEDISIEVE LTD
    Inventors: George Charles Martin FRODSHAM, Quentin Andrew PANKHURST, Richard Alan WENMAN, Simon Richard HATTERSLEY
  • Patent number: 10265457
    Abstract: A hemofilter system. In one embodiment, the hemofilter system includes a container having a first surface, a second surface, and one or more wall surfaces, the first surface, the second surface and the one or more wall surfaces defining a volume; an input port in fluid communication with the first surface; an output port in fluid communication with the second surface; a filter bed comprising a plurality of planar magnetic meshes stacked in close juxtaposition and positioned within the container volume and coplanar with the first and second surfaces; a first magnet positioned on a first surface of the container; a second magnet positioned on the second surface of the container; a first input conduit in fluid communication with the input port; and a first output conduit in fluid communication with the output port. In another embodiment, the hemofilter system includes a pump in the input conduit.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: April 23, 2019
    Assignee: MEDISIEVE LTD
    Inventors: George Charles Martin Frodsham, Quentin Andrew Pankhurst, Richard Alan Wenman, Simon Richard Hattersley
  • Patent number: 9702686
    Abstract: A detector circuit for a multi-channel interferometer, typically as may be used in an optical coherence tomography device, comprising: a plurality of measurement channels (43) each comprising a measurement detector (31); and a balance channel (44) comprising a balance detector (30), each of the measurement detectors (31) and the balance detector (30) having a light sensitive area and an electrical output configured to output a signal indicative of the intensity of light incident on the light sensitive area, in which each measurement channel (43) is provided with a feedback circuit (40) comprising: a variable gain circuit (35) having an input for the signal from the measurement detector (31) and an output, the variable gain circuit (35) being configured to output at its output the signal received at its input with a variable level of gain; a difference circuit (38) having a first input for the output of the variable gain circuit (35), a second input for the signal from the balance detector (30) and an output,
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 11, 2017
    Assignee: Michelson Diagnostics Ltd
    Inventor: Simon Richard Hattersley
  • Publication number: 20170072128
    Abstract: A hemofilter system. In one embodiment, the hemofilter system includes a container having a first surface, a second surface, and one or more wall surfaces, the first surface, the second surface and the one or more wall surfaces defining a volume; an input port in fluid communication with the first surface; an output port in fluid communication with the second surface; a filter bed comprising a plurality of planar magnetic meshes stacked in close juxtaposition and positioned within the container volume and coplanar with the first and second surfaces; a first magnet positioned on a first surface of the container; a second magnet positioned on the second surface of the container; a first input conduit in fluid communication with the input port; and a first output conduit in fluid communication with the output port. In another embodiment, the hemofilter system includes a pump in the input conduit.
    Type: Application
    Filed: September 14, 2016
    Publication date: March 16, 2017
    Applicant: MEDISIEVE LTD
    Inventors: George Charles Martin FRODSHAM, Quentin Andrew PANKHURST, Richard Alan WENMAN, Simon Richard HATTERSLEY
  • Patent number: 9523748
    Abstract: A probe for detecting magnetic particles. In one embodiment, the probe includes: a cylindrical probe core having a first end and a second end, the cylindrical probe core defining two channels for containing coils of wire, one of the channels being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the channels; and two drive coils, one each of the drive coils being co-located with the respective sense coil in a respective one of the channels.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: December 20, 2016
    Assignee: Endomagnetics Ltd
    Inventors: Simon Richard Hattersley, Peter Georg Laitenberger
  • Patent number: 9427186
    Abstract: A system and method for locating magnetic material. In one embodiment the system includes a magnetic probe; a power module in electrical communication with the magnetic probe to supply current to the magnetic probe; a sense module in electrical communication with the magnetic probe to receive signals from the magnetic probe; and a processing module in electrical communication with the power module and the sense module. The processing module generates a waveform that controls the supply of current from the power module and receives a signal from the sense module that indicates the presence of magnetic material. The magnetic probe is constructed from a material having a coefficient of thermal expansion of substantially 10?6/° C. or less and a Young's modulus of substantially 50 GPa or greater. In one embodiment magnetic nanoparticles collect in the lymph nodes. In one embodiment the particles have a mean hydrodynamic diameter of between 5-200 nm.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: August 30, 2016
    Assignee: ENDOMAGNETICS LTD.
    Inventors: Simon Richard Hattersley, Quentin Andrew Pankhurst
  • Publication number: 20160124057
    Abstract: A probe for detecting magnetic particles. In one embodiment, the probe includes: a cylindrical probe core having a first end and a second end, the cylindrical probe core defining two channels for containing coils of wire, one of the channels being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the channels; and two drive coils, one each of the drive coils being co-located with the respective sense coil in a respective one of the channels.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventor: Simon Richard Hattersley
  • Patent number: 9239314
    Abstract: A probe and method for detecting magnetic particles. In one embodiment, the probe includes a probe core having a first end and a second end, the probe core defining two regions for containing coils of wire, one of the regions being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the regions; and two drive coils, one each of the drive coils being located in a respective one of the regions, wherein the regions are separated by a distance equal to or greater than the diameter of one of the coils and a source of a secondary magnetic drive field. In another embodiment, the frequency of the drive signal of the secondary magnetic drive field is less than the frequency of the drive signal of the primary drive coils.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 19, 2016
    Assignee: ENDOMAGNETICS LTD.
    Inventors: Simon Richard Hattersley, Peter Georg Laitenberger, Audrius Brazdeikis
  • Patent number: 9234877
    Abstract: A probe for detecting magnetic particles. In one embodiment, the probe includes: a cylindrical probe core having a first end and a second end, the cylindrical probe core defining two channels for containing coils of wire, one of the channels being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the channels; and two drive coils, one each of the drive coils being co-located with the respective sense coil in a respective one of the channels.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 12, 2016
    Assignees: Endomagnetics LTD., University of Houston
    Inventors: Simon Richard Hattersley, Peter Georg Laitenberger, Audrius Brazdeikis
  • Publication number: 20140266175
    Abstract: A probe and method for detecting magnetic particles. In one embodiment, the probe includes a probe core having a first end and a second end, the probe core defining two regions for containing coils of wire, one of the regions being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the regions; and two drive coils, one each of the drive coils being located in a respective one of the regions, wherein the regions are separated by a distance equal to or greater than the diameter of one of the coils and a source of a secondary magnetic drive field. In another embodiment, the frequency of the drive signal of the secondary magnetic drive field is less than the frequency of the drive signal of the primary drive coils.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Simon Richard Hattersley, Peter Georg Laitenberger, Audrius Brazdeikis
  • Publication number: 20140266174
    Abstract: A probe for detecting magnetic particles. In one embodiment, the probe includes: a cylindrical probe core having a first end and a second end, the cylindrical probe core defining two channels for containing coils of wire, one of the channels being adjacent the first end of the cylindrical probe core; two sense coils, one each of the sense coils being located in a respective one of the channels; and two drive coils, one each of the drive coils being co-located with the respective sense coil in a respective one of the channels.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Simon Richard Hattersley, Peter Georg Laitenberger, Audrius Brazdeikis
  • Publication number: 20140218745
    Abstract: A detector circuit for a multi-channel interferometer, typically as may be used in an optical coherence tomography device, comprising: a plurality of measurement channels (43) each comprising a measurement detector (31); and a balance channel (44) comprising a balance detector (30), each of the measurement detectors (31) and the balance detector (30) having a light sensitive area and an electrical output configured to output a signal indicative of the intensity of light incident on the light sensitive area, in which each measurement channel (43) is provided with a feedback circuit (40) comprising: a variable gain circuit (35) having an input for the signal from the measurement detector (31) and an output, the variable gain circuit (35) being configured to output at its output the signal received at its input with a variable level of gain; a difference circuit (38) having a first input for the output of the variable gain circuit (35), a second input for the signal from the balance detector (30) and an output,
    Type: Application
    Filed: August 8, 2012
    Publication date: August 7, 2014
    Applicant: Michelson Diagnostics Ltd.
    Inventor: Simon Richard Hattersley
  • Publication number: 20120229130
    Abstract: Apparatus for determining magnetic properties of materials comprises a portable probe, an equipment trolley holding cryogenics and electronics and connecting cables. The probe comprises a drive coil and a correction coil, the drive coil being disposed symmetrically with respect to an inner second-order gradiometer sensor coil. Electrical connectors in the form of 2-metre long Belden (1192A) microphone cables are used to connect the apparatus on the equipment trolley to the drive coil, the correction coil and the sensor coil. The drive coil is driven so as to generate a sinusoidally varying magnetic field. The electronics comprise a flux-locked loop, a SQUID controller, a data acquisition module, which captures and processes the signals and computer. A liquid-nitrogen dewar is supported on the equipment trolley and houses a sensitive SQUID detector and a transfer coil made from copper.
    Type: Application
    Filed: April 6, 2012
    Publication date: September 13, 2012
    Applicants: UNIVERSITY COLLEGE LONDON, UNIVERSITY OF HOUSTON
    Inventors: Simon Richard Hattersley, Quentin Andrew Pankhurst, Audrius Brazdeikis
  • Patent number: 8174259
    Abstract: Apparatus for determining magnetic properties of materials comprises a portable probe (1), an equipment trolley (2) holding cryogenics and electronics and connecting cables (3). The probe (1) comprises a drive coil (4) and a correction coil (5), the drive coil (4) being disposed symmetrically with respect to an inner second-order gradiometer sensor coil (8). Electrical connectors in the form of 2-meter long Belden (1192A) microphone cables (3) are used to connect the apparatus on the equipment trolley (2) to the drive coil (4), the correction coil (5) and the sensor coil (8). The drive coil (4) is driven so as to generate a sinusoidally varying magnetic field. The electronics comprise a flux-locked loop (9), a SQUID controller (10), a data acquisition module (11), which captures and processes the signals and a computer (12). A liquid-nitrogen dewar (13) is supported on the equipment trolley (2) and houses a sensitive SQUID detector (14) and a transfer coil (15) made from copper.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 8, 2012
    Assignees: University of Houston, University College London
    Inventors: Simon Richard Hattersley, Quentin Andrew Pankhurst, Audrius Brazdeikis