Patents by Inventor Simon Rubanovich

Simon Rubanovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11163565
    Abstract: Embodiments detailed herein relate to matrix operations. For example, embodiments of instruction support for matrix (tile) dot product operations are detailed. Exemplary instructions including computing a dot product of signed words and accumulating in a double word with saturation; computing a dot product of bytes and accumulating in to a dword with saturation, where the input bytes can be signed or unsigned and the dword accumulation has output saturation; etc.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: November 2, 2021
    Assignee: Intel Corporation
    Inventors: Robert Valentine, Dan Baum, Zeev Sperber, Jesus Corbal, Elmoustapha Ould-Ahmed-Vall, Bret L. Toll, Mark J. Charney, Menachem Adelman, Barukh Ziv, Alexander Heinecke, Simon Rubanovich
  • Publication number: 20210303309
    Abstract: In one embodiment, a processor includes a fetch logic to fetch instructions, a decode logic to decode the instructions, an execution logic to execute at least some of the instructions, and a reconstruction logic. The decode logic may identify a first instruction having a first immediate value, accumulate the first immediate value with a folded immediate value associated with a first operand of the first instruction, and prevent the first instruction from provision to the execution logic, such that the first instruction is not to be executed within the execution logic. The reconstruction logic may reconstruct one or more flags associated with a result of the first instruction. Other embodiments are described and claimed.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20210286620
    Abstract: Disclosed embodiments relate to computing dot products of nibbles in tile operands. In one example, a processor includes decode circuitry to decode a tile dot product instruction having fields for an opcode, a destination identifier to identify a M by N destination matrix, a first source identifier to identify a M by K first source matrix, and a second source identifier to identify a K by N second source matrix, each of the matrices containing doubleword elements, and execution circuitry to execute the decoded instruction to perform a flow K times for each element (m, n) of the specified destination matrix to generate eight products by multiplying each nibble of a doubleword element (M,K) of the specified first source matrix by a corresponding nibble of a doubleword element (K,N) of the specified second source matrix, and to accumulate and saturate the eight products with previous contents of the doubleword element.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 16, 2021
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Publication number: 20210279038
    Abstract: Disclosed embodiments relate to performing floating-point (FP) arithmetic. In one example, a processor is to decode an instruction specifying locations of first, second, and third floating-point (FP) operands and an opcode calling for accumulating a FP product of the first and second FP operands with the third FP operand, and execution circuitry to, in a first cycle, generate the FP product having a Fuzzy-Jbit format comprising a sign bit, a 9-bit exponent, and a 25-bit mantissa having two possible positions for a JBit and, in a second cycle, to accumulate the FP product with the third FP operand, while concurrently, based on Jbit positions of the FP product and the third FP operand, determining an exponent adjustment and a mantissa shift control of a result of the accumulation, wherein performing the exponent adjustment concurrently enhances an ability to perform the accumulation in one cycle.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Amit GRADSTEIN, Simon RUBANOVICH, Zeev SPERBER
  • Patent number: 11093247
    Abstract: Embodiments detailed herein relate to systems and methods to load a tile register pair. In one example, a processor includes: decode circuitry to decode a load matrix pair instruction having fields for an opcode and source and destination identifiers to identify source and destination matrices, respectively, each matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded load matrix pair instruction to load every element of left and right tiles of the identified destination matrix from corresponding element positions of left and right tiles of the identified source matrix, respectively, wherein the executing operates on one row of the identified destination matrix at a time, starting with the first row.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Raanan Sade, Simon Rubanovich, Amit Gradstein, Zeev Sperber, Alexander Heinecke, Robert Valentine, Mark J. Charney, Bret Toll, Jesus Corbal, Elmoustapha Ould-Ahmed-Vall, Menachem Adelman
  • Patent number: 11086623
    Abstract: Embodiments detailed herein relate to matrix operations. In particular, matrix (tile) multiply accumulate and negated matrix (tile) multiply accumulate are discussed. For example, in some embodiments decode circuitry to decode an instruction having fields for an opcode, an identifier for a first source matrix operand, an identifier of a second source matrix operand, and an identifier for a source/destination matrix operand; and execution circuitry to execute the decoded instruction to multiply the identified first source matrix operand by the identified second source matrix operand, add a result of the multiplication to the identified source/destination matrix operand, and store a result of the addition in the identified source/destination matrix operand and zero unconfigured columns of identified source/destination matrix operand are detailed.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Robert Valentine, Zeev Sperber, Mark J. Charney, Bret L. Toll, Rinat Rappoport, Stanislav Shwartsman, Dan Baum, Igor Yanover, Elmoustapha Ould-Ahmed-Vall, Menachem Adelman, Jesus Corbal, Yuri Gebil, Simon Rubanovich
  • Patent number: 11068263
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to convert to 16-bit floating-point format. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of a first source vector comprising N single-precision elements, and a destination vector comprising at least N 16-bit floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the specified source vector to 16-bit floating-point, the conversion to include truncation and rounding, as necessary, and to store each converted element into a corresponding location of the specified destination vector, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Patent number: 11068262
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to convert to 16-bit floating-point format. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of a first source vector comprising N single-precision elements, and a destination vector comprising at least N 16-bit floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the specified source vector to 16-bit floating-point, the conversion to include truncation and rounding, as necessary, and to store each converted element into a corresponding location of the specified destination vector, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Patent number: 11036504
    Abstract: Disclosed embodiments relate to systems and methods for performing 16-bit floating-point vector dot product instructions. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first source, second source, and destination vectors, the opcode to indicate execution circuitry is to multiply N pairs of 16-bit floating-point formatted elements of the specified first and second sources, and accumulate the resulting products with previous contents of a corresponding single-precision element of the specified destination, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Patent number: 11036509
    Abstract: In one embodiment, a processor includes a fetch logic to fetch instructions, a decode logic to decode the fetched instructions, and an execution logic to execute at least some of the instructions. The decode logic may determine whether a flag portion of a first instruction to be folded is to be performed, and if not, accumulate a first immediate value of the first instruction with a folded immediate value obtained from an entry of an immediate buffer. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: June 15, 2021
    Assignee: INTEL CORPORATION
    Inventors: Zeev Sperber, Tomer Weiner, Amit Gradstein, Simon Rubanovich, Alex Gerber, Itai Ravid
  • Patent number: 11023235
    Abstract: Embodiments detailed herein relate to systems and methods to zero a tile register pair. In one example, a processor includes decode circuitry to decode a matrix pair zeroing instruction having fields for an opcode and an identifier to identify a destination matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded matrix pair zeroing instruction to zero every element of a left matrix and a right matrix of the identified destination matrix.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Raanan Sade, Simon Rubanovich, Amit Gradstein, Zeev Sperber, Alexander Heinecke, Robert Valentine, Mark J. Charney, Bret Toll, Jesus Corbal, Elmoustapha Ould-Ahmed-Vall, Menachem Adelman, Eyal Hadas
  • Publication number: 20210157589
    Abstract: Disclosed embodiments relate to systems and methods for performing 16-bit floating-point vector dot product instructions. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first source, second source, and destination vectors, the opcode to indicate execution circuitry is to multiply N pairs of 16-bit floating-point formatted elements of the specified first and second sources, and accumulate the resulting products with previous contents of a corresponding single-precision element of the specified destination, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Patent number: 11016731
    Abstract: Disclosed embodiments relate to performing floating-point (FP) arithmetic. In one example, a processor is to decode an instruction specifying locations of first, second, and third floating-point (FP) operands and an opcode calling for accumulating a FP product of the first and second FP operands with the third FP operand, and execution circuitry to, in a first cycle, generate the FP product having a Fuzzy-Jbit format comprising a sign bit, a 9-bit exponent, and a 25-bit mantissa having two possible positions for a JBit and, in a second cycle, to accumulate the FP product with the third FP operand, while concurrently, based on Jbit positions of the FP product and the third FP operand, determining an exponent adjustment and a mantissa shift control of a result of the accumulation, wherein performing the exponent adjustment concurrently enhances an ability to perform the accumulation in one cycle.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Amit Gradstein, Simon Rubanovich, Zeev Sperber
  • Publication number: 20210132943
    Abstract: Embodiments detailed herein relate to matrix operations. For example, embodiments of instruction support for matrix (tile) dot product operations are detailed. Exemplary instructions including computing a dot product of signed words and accumulating in a double word with saturation; computing a dot product of bytes and accumulating in to a dword with saturation, where the input bytes can be signed or unsigned and the dword accumulation has output saturation; etc.
    Type: Application
    Filed: July 1, 2017
    Publication date: May 6, 2021
    Applicant: Intel Corporation
    Inventors: Robert VALENTINE, Dan BAUM, Zeev SPERBER, Jesus CORBAL, Elmoustapha OULD-AHMED-VALL, Bret L. TOLL, Mark J. CHARNEY, Menachem ADELMAN, Barukh ZIV, Alexander HEINECKE, Simon RUBANOVICH
  • Publication number: 20210124581
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to convert to 16-bit floating-point format. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of a first source vector comprising N single-precision elements, and a destination vector comprising at least N 16-bit floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the specified source vector to 16-bit floating-point, the conversion to include truncation and rounding, as necessary, and to store each converted element into a corresponding location of the specified destination vector, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 29, 2021
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Publication number: 20210124580
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to convert to 16-bit floating-point format. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of a first source vector comprising N single-precision elements, and a destination vector comprising at least N 16-bit floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the specified source vector to 16-bit floating-point, the conversion to include truncation and rounding, as necessary, and to store each converted element into a corresponding location of the specified destination vector, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 29, 2021
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Patent number: 10990397
    Abstract: Systems, methods, and apparatuses relating to a matrix operations accelerator are described. In one embodiment, a processor includes a matrix operations accelerator circuit that includes a two-dimensional grid of fused multiply accumulate circuits; a first plurality of registers that represents an input two-dimensional matrix coupled to the matrix operations accelerator circuit; a decoder, of a core coupled to the matrix operations accelerator circuit, to decode an instruction into a decoded instruction; and an execution circuit of the core to execute the decoded instruction to cause the two-dimensional grid of fused multiply accumulate circuits to form a transpose of the input two-dimensional matrix when the matrix operations accelerator circuit is in a transpose mode.
    Type: Grant
    Filed: March 30, 2019
    Date of Patent: April 27, 2021
    Assignee: Intel Corporation
    Inventors: Amit Gradstein, Simon Rubanovich, Sagi Meller, Zeev Sperber, Jose Yallouz, Robert Valentine
  • Publication number: 20210117194
    Abstract: Disclosed embodiments relate to systems and methods for performing 16-bit floating-point vector dot product instructions. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first source, second source, and destination vectors, the opcode to indicate execution circuitry is to multiply N pairs of 16-bit floating-point formatted elements of the specified first and second sources, and accumulate the resulting products with previous contents of a corresponding single-precision element of the specified destination, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Publication number: 20210096822
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to transpose rectangular tiles. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first destination, second destination, first source, and second source matrices, the specified opcode to cause the processor to process each of the specified source and destination matrices as a rectangular matrix, decode circuitry to decode the fetched rectangular matrix transpose instruction, and execution circuitry to respond to the decoded rectangular matrix transpose instruction by transposing each row of elements of the specified first source matrix into a corresponding column of the specified first destination matrix and transposing each row of elements of the specified second source matrix into a corresponding column of the specified second destination matrix.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Raanan SADE, Robert VALENTINE, Mark J. CHARNEY, Simon RUBANOVICH, Amit GRADSTEIN, Zeev SPERBER, Bret TOLL, Jesus CORBAL, Christopher J. HUGHES, Alexander F. HEINECKE, Elmoustapha OULD-AHMED-VALL
  • Patent number: 10963246
    Abstract: Disclosed embodiments relate to computing dot products of nibbles in tile operands. In one example, a processor includes decode circuitry to decode a tile dot product instruction having fields for an opcode, a destination identifier to identify a M by N destination matrix, a first source identifier to identify a M by K first source matrix, and a second source identifier to identify a K by N second source matrix, each of the matrices containing doubleword elements, and execution circuitry to execute the decoded instruction to perform a flow K times for each element (m, n) of the specified destination matrix to generate eight products by multiplying each nibble of a doubleword element (M,K) of the specified first source matrix by a corresponding nibble of a doubleword element (K,N) of the specified second source matrix, and to accumulate and saturate the eight products with previous contents of the doubleword element.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich