Patents by Inventor Simon Yang

Simon Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6740427
    Abstract: The invention relates to a ball limiting metallurgy stack for an electrical device that contains a tin diffusion barrier and thermo-mechanical buffer layer disposed upon a refractory metal first layer. The multi-diffusion barrier layer stack resists tin migration toward the upper metallization of the device.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: May 25, 2004
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Tzeun-luh Huang, Subhash M. Joshi, Christine A. King, Zhiyong Ma, Thomas Marieb, Michael Mckeag, Doowon Suh, Simon Yang
  • Patent number: 6593633
    Abstract: The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with recessed thin inner spacers and recessed thin outer spacers.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: July 15, 2003
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6566727
    Abstract: A method of forming an isolation structure in a semiconductor substrate is described. A trench is first etched into a semiconductor substrate. A first oxide layer is then formed with the trench. The first oxide layer is subjected to a nitrogen-oxide gas ambient and is annealed to form an oxy-nitride surface on the first oxide layer and a silicon-oxynitride interface between the first oxide layer and the semiconductor substrate. A second oxide layer is then deposited over the oxy-nitride surface of the first oxide layer. The method and isolation structure of the present invention prevents dopant outdiffusion, reduces trench stresses, allows more uniform growth of thin gate oxides, and permits the use of thinner gate oxides.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: May 20, 2003
    Assignee: Intel Corporation
    Inventors: Reza Arghavani, Robert S. Chau, Simon Yang, John Graham
  • Publication number: 20030059644
    Abstract: The invention relates to a ball limiting metallurgy stack for an electrical device that contains a tin diffusion barrier and thermo-mechanical buffer layer disposed upon a refractory metal first layer. The multi-diffusion barrier layer stack resists tin migration toward the upper metallization of the device.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 27, 2003
    Applicant: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Tzeun-luh Huang, Subhash M. Joshi, Christine A. King, Zhiyong Ma, Thomas Marieb, Michael Mckeag, Doowon Suh, Simon Yang
  • Patent number: 6521964
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: February 18, 2003
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6509618
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: January 21, 2003
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6506652
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: January 14, 2003
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Publication number: 20020082624
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Application
    Filed: January 5, 2000
    Publication date: June 27, 2002
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Stephen J. Keating, Alan Myers
  • Publication number: 20020003268
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Application
    Filed: January 4, 2000
    Publication date: January 10, 2002
    Inventors: CHIA-HONG JAN, JULIE A. TSAI, SIMON YANG, TAHIR GHANI, KEVIN A. WHITEHILL, STEVEN J. KEATING, ALAN MYERS
  • Publication number: 20010045586
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Application
    Filed: January 4, 2000
    Publication date: November 29, 2001
    Inventors: CHIA-HONG JAN, JULIE A. TSAI, SIMON YANG, TAHIR GHANI, KEVIN A. WHITEHILL, STEVEN J. KEATING, ALAN MYERS
  • Publication number: 20010045607
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with-recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Application
    Filed: December 9, 1999
    Publication date: November 29, 2001
    Inventors: CHIA-HONG JAN, JULIE A. TSAI, SIMON YANG, TAHIR GHANI, KEVIN A. WHITEHILL, STEVEN J. KEATING, ALAN MYERS
  • Patent number: 6271096
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: August 7, 2001
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6268254
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: July 31, 2001
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6261925
    Abstract: A method of forming an isolation structure in a semiconductor substrate is described. A trench is first etched into a semiconductor substrate. A first oxide layer is then formed with the trench. The first oxide layer is subjected to a nitrogen-oxide gas ambient and is annealed to form an oxy-nitride surface on the first oxide layer and a silicon-oxynitride interface between the first oxide layer and the semiconductor substrate. A second oxide layer is then deposited over the oxy-nitride surface of the first oxide layer. The method and isolation structure of the present invention prevents dopant outdiffusion, reduces trench stresses, allows more uniform growth of thin gate oxides, and permits the use of thinner gate oxides.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: July 17, 2001
    Assignee: Intel Corporation
    Inventors: Reza Arghavani, Robert S. Chau, Simon Yang, John Graham
  • Patent number: 6251762
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;M. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: June 26, 2001
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6235598
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: May 22, 2001
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 6188117
    Abstract: A method and device for improved polycide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: February 13, 2001
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 5780346
    Abstract: A method of forming an isolation structure in a semiconductor substrate is described. A trench is first etched into a semiconductor substrate. A first oxide layer is then formed with the trench. The first oxide layer is subjected to a nitrogen-oxide gas ambient and is annealed to form an oxy-nitride surface on the first oxide layer and a silicon-oxynitride interface between the first oxide layer and the semiconductor substrate. A second oxide layer is then deposited over the oxy-nitride surface of the first oxide layer. The method and isolation structure of the present invention prevents dopant outdiffusion, reduces trench stresses, allows more uniform growth of thin gate oxides, and permits the use of thinner gate oxides.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: July 14, 1998
    Assignee: Intel Corporation
    Inventors: Reza Arghavani, Robert S. Chau, Simon Yang, John Graham
  • Patent number: 5289035
    Abstract: A tri-layer titanium coating for an aluminum layer of a semiconductor device. An aluminum layer used for interconnecting individual devices of an integrated circuit is formed on a semiconductor material. A first titanium nitride layer is deposited on the aluminum layer. A titanium layer is deposited on the first titanium nitride layer. A second titanium nitride layer is then deposited on the titanium layer. The tri-layer titanium coating prevents the formation of Al.sub.2 O.sub.3 and AIF.sub.3 during the etching of a via hole in an intermetal dielectric layer deposited above the second titanium nitride layer.
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: February 22, 1994
    Assignee: Intel Corporation
    Inventors: Melton C. Bost, Simon Yang, Yeochung Yen, Jim Baldo, Barbara Greenebaum
  • Patent number: 5231053
    Abstract: A tri-layer titanium coating for an aluminum layer of a semiconductor device. An aluminum layer used for interconnecting individual devices of an integrated circuit is formed on a semiconductor material. A first titanium nitride layer is deposited on the aluminum layer. A titanium layer is deposited on the first titanium nitride layer. A second titanium nitride layer is then deposited on the titanium layer. The tri-layer titanium coating prevents the formation of Al.sub.2 O.sub.3 and AlF.sub.3 during the etching of a via hole in an intermetal dielectric layer deposited above the second titanium nitride layer.
    Type: Grant
    Filed: October 15, 1991
    Date of Patent: July 27, 1993
    Assignee: Intel Corporation
    Inventors: Melton C. Bost, Simon Yang, Yeochung Yen, Jim Baldo, Barbara Greenebaum