Patents by Inventor Simone RODRIGUEZ

Simone RODRIGUEZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200179141
    Abstract: In one aspect, novel robust electroactive polymers (EAPs) is described, which contract and expand at low voltages to provide for a shape-morphing system, e.g., a prosthetic liner, and potentially entire prosthetic socket, to contract and expand in strategic areas as needed to maintain a comfortable and good fit throughout the day. In some embodiments, as the residual limb changes, these novel robust EAPs can change dynamically as needed to maintain a comfortable, snug fit of the prosthetic liner or socket with the hard shell of the prosthetic socket device. In some embodiments, the EAPs used in prosthetic liners or sockets can also be used to detect pressure as the device is being used, and automatically adjust to maintain fit through a control unit, so that the patient does not even have to stop and adjust his or her device as he or she goes about an active day.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 11, 2020
    Inventors: Lenore RASMUSSEN, Eric SANDBERG, Simone RODRIGUEZ
  • Patent number: 10603191
    Abstract: In one aspect, novel robust electroactive polymers (EAPs) is described, which contract and expand at low voltages to provide for a shape-morphing system, e.g., a prosthetic liner, and potentially entire prosthetic socket, to contract and expand in strategic areas as needed to maintain a comfortable and good fit throughout the day. In some embodiments, as the residual limb changes, these novel robust EAPs can change dynamically as needed to maintain a comfortable, snug fit of the prosthetic liner or socket with the hard shell of the prosthetic socket device. In some embodiments, the EAPs used in prosthetic liners or sockets can also be used to detect pressure as the device is being used, and automatically adjust to maintain fit through a control unit, so that the patient does not even have to stop and adjust his or her device as he or she goes about an active day.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 31, 2020
    Assignee: RAS LABS, INC.
    Inventors: Lenore Rasmussen, Eric Sandberg, Simone Rodriguez
  • Publication number: 20190290456
    Abstract: Novel robust electroactive polymers (EAPs) and EAP-based systems are described, which contract and expand at low voltages to provide for a shape-morphing system, which also sense mechanical pressure, from gentle touch to high impact, and which attenuate force. These EAPs and EAP-based systems can be used in a prosthetic liner, and potentially as the entire prosthetic liner, in a prosthetic hard socket, in shoe wear, sports gear, protective gear, and military gear, and in compression equipment, to contract and expand in strategic areas as needed to maintain a perfect fit, to sense pressure and provide feedback to automatically maintain perfect fit, and to attenuate force for an extremely comfortable fit.
    Type: Application
    Filed: June 23, 2017
    Publication date: September 26, 2019
    Inventors: Lenore RASMUSSEN, Leila ALBERS, Simone RODRIGUEZ
  • Publication number: 20170333223
    Abstract: In one aspect, novel robust electroactive polymers (EAPs) is described, which contract and expand at low voltages to provide for a shape-morphing system, e.g., a prosthetic liner, and potentially entire prosthetic socket, to contract and expand in strategic areas as needed to maintain a comfortable and good fit throughout the day. In some embodiments, as the residual limb changes, these novel robust EAPs can change dynamically as needed to maintain a comfortable, snug fit of the prosthetic liner or socket with the hard shell of the prosthetic socket device. In some embodiments, the EAPs used in prosthetic liners or sockets can also be used to detect pressure as the device is being used, and automatically adjust to maintain fit through a control unit, so that the patient does not even have to stop and adjust his or her device as he or she goes about an active day.
    Type: Application
    Filed: November 4, 2015
    Publication date: November 23, 2017
    Inventors: Lenore RASMUSSEN, Eric SANDBERG, Simone RODRIGUEZ